Cargando…
Data-driven remaining useful life prediction based on domain adaptation
As an important part of prognostics and health management, remaining useful life (RUL) prediction can provide users and managers with system life information and improve the reliability of maintenance systems. Data-driven methods are powerful tools for RUL prediction because of their great modeling...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444085/ https://www.ncbi.nlm.nih.gov/pubmed/34604520 http://dx.doi.org/10.7717/peerj-cs.690 |
_version_ | 1784568419465560064 |
---|---|
author | Wen, Bin cheng Xiao, Ming qing Wang, Xue qi Zhao, Xin Li, Jian feng Chen, Xin |
author_facet | Wen, Bin cheng Xiao, Ming qing Wang, Xue qi Zhao, Xin Li, Jian feng Chen, Xin |
author_sort | Wen, Bin cheng |
collection | PubMed |
description | As an important part of prognostics and health management, remaining useful life (RUL) prediction can provide users and managers with system life information and improve the reliability of maintenance systems. Data-driven methods are powerful tools for RUL prediction because of their great modeling abilities. However, most current data-driven studies require large amounts of labeled training data and assume that the training data and test data follow similar distributions. In fact, the collected data are often variable due to different equipment operating conditions, fault modes, and noise distributions. As a result, the assumption that the training data and the test data obey the same distribution may not be valid. In response to the above problems, this paper proposes a data-driven framework with domain adaptability using a bidirectional gated recurrent unit (BGRU). The framework uses a domain-adversarial neural network (DANN) to implement transfer learning (TL) from the source domain to the target domain, which contains only sensor information. To verify the effectiveness of the proposed method, we analyze the IEEE PHM 2012 Challenge datasets and use them for verification. The experimental results show that the generalization ability of the model is effectively improved through the domain adaptation approach. |
format | Online Article Text |
id | pubmed-8444085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84440852021-09-30 Data-driven remaining useful life prediction based on domain adaptation Wen, Bin cheng Xiao, Ming qing Wang, Xue qi Zhao, Xin Li, Jian feng Chen, Xin PeerJ Comput Sci Algorithms and Analysis of Algorithms As an important part of prognostics and health management, remaining useful life (RUL) prediction can provide users and managers with system life information and improve the reliability of maintenance systems. Data-driven methods are powerful tools for RUL prediction because of their great modeling abilities. However, most current data-driven studies require large amounts of labeled training data and assume that the training data and test data follow similar distributions. In fact, the collected data are often variable due to different equipment operating conditions, fault modes, and noise distributions. As a result, the assumption that the training data and the test data obey the same distribution may not be valid. In response to the above problems, this paper proposes a data-driven framework with domain adaptability using a bidirectional gated recurrent unit (BGRU). The framework uses a domain-adversarial neural network (DANN) to implement transfer learning (TL) from the source domain to the target domain, which contains only sensor information. To verify the effectiveness of the proposed method, we analyze the IEEE PHM 2012 Challenge datasets and use them for verification. The experimental results show that the generalization ability of the model is effectively improved through the domain adaptation approach. PeerJ Inc. 2021-09-01 /pmc/articles/PMC8444085/ /pubmed/34604520 http://dx.doi.org/10.7717/peerj-cs.690 Text en ©2021 Wen et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Algorithms and Analysis of Algorithms Wen, Bin cheng Xiao, Ming qing Wang, Xue qi Zhao, Xin Li, Jian feng Chen, Xin Data-driven remaining useful life prediction based on domain adaptation |
title | Data-driven remaining useful life prediction based on domain adaptation |
title_full | Data-driven remaining useful life prediction based on domain adaptation |
title_fullStr | Data-driven remaining useful life prediction based on domain adaptation |
title_full_unstemmed | Data-driven remaining useful life prediction based on domain adaptation |
title_short | Data-driven remaining useful life prediction based on domain adaptation |
title_sort | data-driven remaining useful life prediction based on domain adaptation |
topic | Algorithms and Analysis of Algorithms |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444085/ https://www.ncbi.nlm.nih.gov/pubmed/34604520 http://dx.doi.org/10.7717/peerj-cs.690 |
work_keys_str_mv | AT wenbincheng datadrivenremainingusefullifepredictionbasedondomainadaptation AT xiaomingqing datadrivenremainingusefullifepredictionbasedondomainadaptation AT wangxueqi datadrivenremainingusefullifepredictionbasedondomainadaptation AT zhaoxin datadrivenremainingusefullifepredictionbasedondomainadaptation AT lijianfeng datadrivenremainingusefullifepredictionbasedondomainadaptation AT chenxin datadrivenremainingusefullifepredictionbasedondomainadaptation |