Cargando…
Sensitivity of deep learning applied to spatial image steganalysis
In recent years, the traditional approach to spatial image steganalysis has shifted to deep learning (DL) techniques, which have improved the detection accuracy while combining feature extraction and classification in a single model, usually a convolutional neural network (CNN). The main contributio...
Autores principales: | Tabares-Soto, Reinel, Arteaga-Arteaga, Harold Brayan, Mora-Rubio, Alejandro, Bravo-Ortíz, Mario Alejandro, Arias-Garzón, Daniel, Alzate-Grisales, Jesús Alejandro, Orozco-Arias, Simon, Isaza, Gustavo, Ramos-Pollán, Raúl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444093/ https://www.ncbi.nlm.nih.gov/pubmed/34604512 http://dx.doi.org/10.7717/peerj-cs.616 |
Ejemplares similares
-
Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
por: Tabares-Soto, Reinel, et al.
Publicado: (2021) -
COVID-19 detection in X-ray images using convolutional neural networks [Image: see text]
por: Arias-Garzón, Daniel, et al.
Publicado: (2021) -
Machine learning applications to predict two-phase flow patterns
por: Arteaga-Arteaga, Harold Brayan, et al.
Publicado: (2021) -
Requests classification in the customer service area for software companies using machine learning and natural language processing
por: Arias-Barahona, María Ximena, et al.
Publicado: (2023) -
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
por: Alzate-Grisales, Jesús Alejandro, et al.
Publicado: (2022)