Cargando…
Comparison of Different Neural Network Architectures for Plasmonic Inverse Design
[Image: see text] The merge between nanophotonics and a deep neural network has shown unprecedented capability of efficient forward modeling and accurate inverse design if an appropriate network architecture and training method are selected. Commonly, an iterative neural network and a tandem neural...
Autores principales: | Wu, Qingxin, Li, Xiaozhong, Wang, Wenqi, Dong, Qiao, Xiao, Yibo, Cao, Xinyi, Wang, Lianhui, Gao, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444196/ https://www.ncbi.nlm.nih.gov/pubmed/34549108 http://dx.doi.org/10.1021/acsomega.1c02165 |
Ejemplares similares
-
On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks
por: Sun, Yang, et al.
Publicado: (2021) -
Inverse design of glass structure with deep graph neural networks
por: Wang, Qi, et al.
Publicado: (2021) -
A Multithread Nested Neural Network Architecture to Model Surface Plasmon Polaritons Propagation
por: Capizzi, Giacomo, et al.
Publicado: (2016) -
Deep Neural Network Inverse Design of Integrated Photonic Power Splitters
por: Tahersima, Mohammad H., et al.
Publicado: (2019) -
Nanophotonic particle simulation and inverse design using artificial neural networks
por: Peurifoy, John, et al.
Publicado: (2018)