Cargando…
Chemically Accurate Vibrational Free Energies of Adsorption from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites
[Image: see text] We present a methodology to compute, at reduced computational cost, Gibbs free energies, enthalpies, and entropies of adsorption from molecular dynamics. We calculate vibrational partition functions from vibrational energies, which we obtain from the vibrational density of states b...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444336/ https://www.ncbi.nlm.nih.gov/pubmed/34459582 http://dx.doi.org/10.1021/acs.jctc.1c00519 |
_version_ | 1784568469989097472 |
---|---|
author | Galimberti, Daria Ruth Sauer, Joachim |
author_facet | Galimberti, Daria Ruth Sauer, Joachim |
author_sort | Galimberti, Daria Ruth |
collection | PubMed |
description | [Image: see text] We present a methodology to compute, at reduced computational cost, Gibbs free energies, enthalpies, and entropies of adsorption from molecular dynamics. We calculate vibrational partition functions from vibrational energies, which we obtain from the vibrational density of states by projection on the normal modes. The use of a set of well-chosen reference structures along the trajectories accounts for the anharmonicities of the modes. For the adsorption of methane, ethane, and propane in the H-CHA zeolite, we limit our treatment to a set of vibrational modes localized at the adsorption site (zeolitic OH group) and the alkane molecule interacting with it. Only two short trajectories (1–20 ps) are required to reach convergence (<1 kJ/mol) for the thermodynamic functions. The mean absolute deviations from the experimentally measured values are 2.6, 2.8, and 4.7 kJ/mol for the Gibbs free energy, the enthalpy, and the entropy term (−TΔS), respectively. In particular, the entropy terms show a major improvement compared to the harmonic approximation and almost reach the accuracy of the previous use of anharmonic frequencies obtained with curvilinear distortions of individual modes. The thermodynamic functions so obtained follow the trend of the experimental values for methane, ethane, and propane, and the Gibbs free energy of adsorption at experimental conditions is correctly predicted to change from positive for methane (5.9 kJ/mol) to negative for ethane (−4.8 kJ/mol) and propane (−7.1 kJ/mol). |
format | Online Article Text |
id | pubmed-8444336 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-84443362021-09-20 Chemically Accurate Vibrational Free Energies of Adsorption from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites Galimberti, Daria Ruth Sauer, Joachim J Chem Theory Comput [Image: see text] We present a methodology to compute, at reduced computational cost, Gibbs free energies, enthalpies, and entropies of adsorption from molecular dynamics. We calculate vibrational partition functions from vibrational energies, which we obtain from the vibrational density of states by projection on the normal modes. The use of a set of well-chosen reference structures along the trajectories accounts for the anharmonicities of the modes. For the adsorption of methane, ethane, and propane in the H-CHA zeolite, we limit our treatment to a set of vibrational modes localized at the adsorption site (zeolitic OH group) and the alkane molecule interacting with it. Only two short trajectories (1–20 ps) are required to reach convergence (<1 kJ/mol) for the thermodynamic functions. The mean absolute deviations from the experimentally measured values are 2.6, 2.8, and 4.7 kJ/mol for the Gibbs free energy, the enthalpy, and the entropy term (−TΔS), respectively. In particular, the entropy terms show a major improvement compared to the harmonic approximation and almost reach the accuracy of the previous use of anharmonic frequencies obtained with curvilinear distortions of individual modes. The thermodynamic functions so obtained follow the trend of the experimental values for methane, ethane, and propane, and the Gibbs free energy of adsorption at experimental conditions is correctly predicted to change from positive for methane (5.9 kJ/mol) to negative for ethane (−4.8 kJ/mol) and propane (−7.1 kJ/mol). American Chemical Society 2021-08-30 2021-09-14 /pmc/articles/PMC8444336/ /pubmed/34459582 http://dx.doi.org/10.1021/acs.jctc.1c00519 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Galimberti, Daria Ruth Sauer, Joachim Chemically Accurate Vibrational Free Energies of Adsorption from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites |
title | Chemically Accurate Vibrational Free Energies of Adsorption
from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites |
title_full | Chemically Accurate Vibrational Free Energies of Adsorption
from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites |
title_fullStr | Chemically Accurate Vibrational Free Energies of Adsorption
from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites |
title_full_unstemmed | Chemically Accurate Vibrational Free Energies of Adsorption
from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites |
title_short | Chemically Accurate Vibrational Free Energies of Adsorption
from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites |
title_sort | chemically accurate vibrational free energies of adsorption
from density functional theory molecular dynamics: alkanes in zeolites |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444336/ https://www.ncbi.nlm.nih.gov/pubmed/34459582 http://dx.doi.org/10.1021/acs.jctc.1c00519 |
work_keys_str_mv | AT galimbertidariaruth chemicallyaccuratevibrationalfreeenergiesofadsorptionfromdensityfunctionaltheorymoleculardynamicsalkanesinzeolites AT sauerjoachim chemicallyaccuratevibrationalfreeenergiesofadsorptionfromdensityfunctionaltheorymoleculardynamicsalkanesinzeolites |