Cargando…
Which deep learning model can best explain object representations of within-category exemplars?
Deep neural network (DNN) models realize human-equivalent performance in tasks such as object recognition. Recent developments in the field have enabled testing the hierarchical similarity of object representation between the human brain and DNNs. However, the representational geometry of object exe...
Autor principal: | Lee, Dongha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444465/ https://www.ncbi.nlm.nih.gov/pubmed/34520508 http://dx.doi.org/10.1167/jov.21.10.12 |
Ejemplares similares
-
The distributional properties of exemplars affect category learning and generalization
por: Carvalho, Paulo F., et al.
Publicado: (2021) -
Explaining Sentiment Classification with Synthetic Exemplars and Counter-Exemplars
por: Lampridis, Orestis, et al.
Publicado: (2020) -
Development of Deep Learning Models to Predict Best-Corrected Visual Acuity from Optical Coherence Tomography
por: Kawczynski, Michael G., et al.
Publicado: (2020) -
Dynamics of neural representations when searching for exemplars and categories of human and non-human faces
por: Bayet, Laurie, et al.
Publicado: (2018) -
Functional imaging analyses reveal prototype and exemplar representations in a perceptual single-category task
por: Blank, Helen, et al.
Publicado: (2022)