Cargando…

Active behaviour of terrestrial caterpillars on the water surface

Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars accidentally fall into water, they may drown or be preyed upon by aquatic predators before they can safely reach land. However, how terrestrial caterpillars escape aquatic environments and predators remains u...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayashi, Masakazu, Sugiura, Shinji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445081/
https://www.ncbi.nlm.nih.gov/pubmed/34603846
http://dx.doi.org/10.7717/peerj.11971
_version_ 1784568580087480320
author Hayashi, Masakazu
Sugiura, Shinji
author_facet Hayashi, Masakazu
Sugiura, Shinji
author_sort Hayashi, Masakazu
collection PubMed
description Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars accidentally fall into water, they may drown or be preyed upon by aquatic predators before they can safely reach land. However, how terrestrial caterpillars escape aquatic environments and predators remains unclear. In July 2018, we observed a terrestrial caterpillar actively moving forward on the surface of a pond in Japan until it successfully reached the shore. To further investigate this behaviour in terrestrial caterpillars, we experimentally placed larvae of 13 moth species (four families) on a water surface under laboratory and field conditions. All caterpillars floated. Larvae of seven species moved forward on the water surface, whereas those of six species did not. A total of two types of behaviour were observed; in Dinumma deponens, Hypopyra vespertilio, Spirama retorta, Laelia coenosa, Lymantria dispar (all Erebidae), and Naranga aenescens (Noctuidae), larvae swung their bodies rapidly from side to side to propel themselves along the water surface (i.e., undulatory behaviour); in contrast, larvae of Acosmetia biguttula (Noctuidae) rapidly moved the abdomen (posterior segments) up and down for propulsion along the water surface (i.e., flick behaviour). Although thoracic legs were not used for undulatory and flick behaviour, rapid movements of the abdomen were used to propel caterpillars on the water surface. We also observed that undulatory and flick behaviour on the water surface aided caterpillars in escaping aquatic predators under field conditions. In addition, we investigated the relationship between body size and undulatory behaviour on the water surface in the erebid S. retorta under laboratory conditions. The frequency and speed of forward movement on the water surface increased with body length. Together, these results show that the rapid movement of elongated bodies results in forward propulsion on the water surface, allowing some terrestrial caterpillars to avoid drowning or aquatic predators. We further suggested potential factors related to morphology, host plant habitat, and defensive behaviour that may have led to the acquisition of aquatic behaviour in terrestrial caterpillars.
format Online
Article
Text
id pubmed-8445081
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-84450812021-09-30 Active behaviour of terrestrial caterpillars on the water surface Hayashi, Masakazu Sugiura, Shinji PeerJ Animal Behavior Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars accidentally fall into water, they may drown or be preyed upon by aquatic predators before they can safely reach land. However, how terrestrial caterpillars escape aquatic environments and predators remains unclear. In July 2018, we observed a terrestrial caterpillar actively moving forward on the surface of a pond in Japan until it successfully reached the shore. To further investigate this behaviour in terrestrial caterpillars, we experimentally placed larvae of 13 moth species (four families) on a water surface under laboratory and field conditions. All caterpillars floated. Larvae of seven species moved forward on the water surface, whereas those of six species did not. A total of two types of behaviour were observed; in Dinumma deponens, Hypopyra vespertilio, Spirama retorta, Laelia coenosa, Lymantria dispar (all Erebidae), and Naranga aenescens (Noctuidae), larvae swung their bodies rapidly from side to side to propel themselves along the water surface (i.e., undulatory behaviour); in contrast, larvae of Acosmetia biguttula (Noctuidae) rapidly moved the abdomen (posterior segments) up and down for propulsion along the water surface (i.e., flick behaviour). Although thoracic legs were not used for undulatory and flick behaviour, rapid movements of the abdomen were used to propel caterpillars on the water surface. We also observed that undulatory and flick behaviour on the water surface aided caterpillars in escaping aquatic predators under field conditions. In addition, we investigated the relationship between body size and undulatory behaviour on the water surface in the erebid S. retorta under laboratory conditions. The frequency and speed of forward movement on the water surface increased with body length. Together, these results show that the rapid movement of elongated bodies results in forward propulsion on the water surface, allowing some terrestrial caterpillars to avoid drowning or aquatic predators. We further suggested potential factors related to morphology, host plant habitat, and defensive behaviour that may have led to the acquisition of aquatic behaviour in terrestrial caterpillars. PeerJ Inc. 2021-09-13 /pmc/articles/PMC8445081/ /pubmed/34603846 http://dx.doi.org/10.7717/peerj.11971 Text en © 2021 Hayashi and Sugiura https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Animal Behavior
Hayashi, Masakazu
Sugiura, Shinji
Active behaviour of terrestrial caterpillars on the water surface
title Active behaviour of terrestrial caterpillars on the water surface
title_full Active behaviour of terrestrial caterpillars on the water surface
title_fullStr Active behaviour of terrestrial caterpillars on the water surface
title_full_unstemmed Active behaviour of terrestrial caterpillars on the water surface
title_short Active behaviour of terrestrial caterpillars on the water surface
title_sort active behaviour of terrestrial caterpillars on the water surface
topic Animal Behavior
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445081/
https://www.ncbi.nlm.nih.gov/pubmed/34603846
http://dx.doi.org/10.7717/peerj.11971
work_keys_str_mv AT hayashimasakazu activebehaviourofterrestrialcaterpillarsonthewatersurface
AT sugiurashinji activebehaviourofterrestrialcaterpillarsonthewatersurface