Cargando…
Fiber Clustering Acceleration With a Modified Kmeans++ Algorithm Using Data Parallelism
Fiber clustering methods are typically used in brain research to study the organization of white matter bundles from large diffusion MRI tractography datasets. These methods enable exploratory bundle inspection using visualization and other methods that require identifying brain white matter structu...
Autores principales: | Goicovich, Isaac, Olivares, Paulo, Román, Claudio, Vázquez, Andrea, Poupon, Cyril, Mangin, Jean-François, Guevara, Pamela, Hernández, Cecilia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445177/ https://www.ncbi.nlm.nih.gov/pubmed/34539370 http://dx.doi.org/10.3389/fninf.2021.727859 |
Ejemplares similares
-
ParaKMeans: Implementation of a parallelized K-means algorithm suitable for general laboratory use
por: Kraj, Piotr, et al.
Publicado: (2008) -
The water supply association analysis method in Shenzhen based on kmeans clustering discretization and apriori algorithm
por: Liu, Xin, et al.
Publicado: (2021) -
Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information
por: Vázquez, Andrea, et al.
Publicado: (2020) -
Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data
por: Román, Claudio, et al.
Publicado: (2017) -
From Coarse to Fine-Grained Parcellation of the Cortical Surface Using a Fiber-Bundle Atlas
por: López-López, Narciso, et al.
Publicado: (2020)