Cargando…
Privacy-preserving dataset combination and Lasso regression for healthcare predictions
BACKGROUND: Recent developments in machine learning have shown its potential impact for clinical use such as risk prediction, prognosis, and treatment selection. However, relevant data are often scattered across different stakeholders and their use is regulated, e.g. by GDPR or HIPAA. As a concrete...
Autores principales: | van Egmond, Marie Beth, Spini, Gabriele, van der Galien, Onno, IJpma, Arne, Veugen, Thijs, Kraaij, Wessel, Sangers, Alex, Rooijakkers, Thomas, Langenkamp, Peter, Kamphorst, Bart, van de L’Isle, Natasja, Kooij-Janic, Milena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445286/ https://www.ncbi.nlm.nih.gov/pubmed/34530824 http://dx.doi.org/10.1186/s12911-021-01582-y |
Ejemplares similares
-
Accurate training of the Cox proportional hazards model on vertically-partitioned data while preserving privacy
por: Kamphorst, Bart, et al.
Publicado: (2022) -
Private Hospital Workflow Optimization via Secure k-Means Clustering
por: Spini, Gabriele, et al.
Publicado: (2019) -
New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment
por: Spini, Gabriele, et al.
Publicado: (2022) -
Analysis of Twitter data with the Bayesian fused graphical lasso
por: Aflakparast, Mehran, et al.
Publicado: (2020) -
Impact of sex differences in co‐morbidities and medication adherence on outcome in 25 776 heart failure patients
por: Gürgöze, Muhammed T., et al.
Publicado: (2020)