Cargando…
Learning brain dynamics for decoding and predicting individual differences
Insights from functional Magnetic Resonance Imaging (fMRI), as well as recordings of large numbers of neurons, reveal that many cognitive, emotional, and motor functions depend on the multivariate interactions of brain signals. To decode brain dynamics, we propose an architecture based on recurrent...
Autores principales: | Misra, Joyneel, Surampudi, Srinivas Govinda, Venkatesh, Manasij, Limbachia, Chirag, Jaja, Joseph, Pessoa, Luiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445454/ https://www.ncbi.nlm.nih.gov/pubmed/34478442 http://dx.doi.org/10.1371/journal.pcbi.1008943 |
Ejemplares similares
-
Comparing Functional Connectivity Matrices: A Geometry-Aware Approach applied to Participant Identification
por: Venkatesh, Manasij, et al.
Publicado: (2019) -
Controllability over stressor decreases responses in key threat-related brain areas
por: Limbachia, Chirag, et al.
Publicado: (2021) -
Multiple Kernel Learning Model for Relating Structural and Functional Connectivity in the Brain
por: Surampudi, Sriniwas Govinda, et al.
Publicado: (2018) -
Decoding individual differences in STEM learning from functional MRI data
por: Cetron, Joshua S., et al.
Publicado: (2019) -
On the benefits of self-taught learning for brain decoding
por: Germani, Elodie, et al.
Publicado: (2023)