Cargando…

Novel method of transpulmonary pressure measurement with an air-filled esophageal catheter

BACKGROUND: There is a strong rationale for proposing transpulmonary pressure-guided protective ventilation in acute respiratory distress syndrome. The reference esophageal balloon catheter method requires complex in vivo calibration, expertise and specific material order. A simple, inexpensive, acc...

Descripción completa

Detalles Bibliográficos
Autores principales: Massion, Paul Bernard, Berg, Julien, Samalea Suarez, Nicolas, Parzibut, Gilles, Lambermont, Bernard, Ledoux, Didier, Massion, Pierre Pascal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445653/
https://www.ncbi.nlm.nih.gov/pubmed/34532776
http://dx.doi.org/10.1186/s40635-021-00411-w
Descripción
Sumario:BACKGROUND: There is a strong rationale for proposing transpulmonary pressure-guided protective ventilation in acute respiratory distress syndrome. The reference esophageal balloon catheter method requires complex in vivo calibration, expertise and specific material order. A simple, inexpensive, accurate and reproducible method of measuring esophageal pressure would greatly facilitate the measure of transpulmonary pressure to individualize protective ventilation in the intensive care unit. RESULTS: We propose an air-filled esophageal catheter method without balloon, using a disposable catheter that allows reproducible esophageal pressure measurements. We use a 49-cm-long 10 Fr thin suction catheter, positioned in the lower-third of the esophagus and connected to an air-filled disposable blood pressure transducer bound to the monitor and pressurized by an air-filled infusion bag. Only simple calibration by zeroing the transducer to atmospheric pressure and unit conversion from mmHg to cmH(2)O are required. We compared our method with the reference balloon catheter both ex vivo, using pressure chambers, and in vivo, in 15 consecutive mechanically ventilated patients. Esophageal-to-airway pressure change ratios during the dynamic occlusion test were close to one (1.03 ± 0.19 and 1.00 ± 0.16 in the controlled and assisted modes, respectively), validating the proper esophageal positioning. The Bland–Altman analysis revealed no bias of our method compared with the reference and good precision for inspiratory, expiratory and delta esophageal pressure measurements in both the controlled (largest bias −0.5 cmH(2)O [95% confidence interval: −0.9; −0.1] cmH(2)O; largest limits of agreement −3.5 to 2.5 cmH(2)O) and assisted modes (largest bias −0.3 [−2.6; 2.0] cmH(2)O). We observed a good repeatability (intra-observer, intraclass correlation coefficient, ICC: 0.89 [0.79; 0.96]) and reproducibility (inter-observer ICC: 0.89 [0.76; 0.96]) of esophageal measurements. The direct comparison with pleural pressure in two patients and spectral analysis by Fourier transform confirmed the reliability of the air-filled catheter-derived esophageal pressure as an accurate surrogate of pleural pressure. A calculator for transpulmonary pressures is available online. CONCLUSIONS: We propose a simple, minimally invasive, inexpensive and reproducible method for esophageal pressure monitoring with an air-filled esophageal catheter without balloon. It holds the promise of widespread bedside use of transpulmonary pressure-guided protective ventilation in ICU patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00411-w.