Cargando…

Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis

Ferroptosis plays a role in several diseases such as iron overload-induced liver diseases. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. Numerous antioxidants have been identified to control ferroptosis but the cell-autonomous mechanisms...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Aimin, Feng, Bin, Yu, Jie, Yan, Lijun, Che, Lianqiang, Zhuo, Yong, Luo, Yuheng, Yu, Bing, Wu, De, Chen, Daiwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445902/
https://www.ncbi.nlm.nih.gov/pubmed/34530349
http://dx.doi.org/10.1016/j.redox.2021.102131
Descripción
Sumario:Ferroptosis plays a role in several diseases such as iron overload-induced liver diseases. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. Numerous antioxidants have been identified to control ferroptosis but the cell-autonomous mechanisms responsible for regulating ferroptosis remain elusive. In the present study, we found that iron overload promoted ferroptosis in hepatocytes by excessively inducing HO-1 expression, which contributed to the progression of liver injury and fibrosis, accompanied by the upregulation of the FGF21 protein level in vitro and in vivo. Interestingly, both recombinant FGF21 and Fgf21 overexpression significantly protected against iron overload-induced hepatocytes mitochondria damage, liver injury and fibrosis by inhibiting ferroptosis. In contrast, the loss of FGF21 aggravated iron overload-induced ferroptosis. Notably, FGF21-induced HO-1 inhibition (via the promotion of HO-1 ubiquitination and degradation) and NRF2 activation provide a mechanistic explanation for this phenomenon. Taken together, we identified FGF21 as a novel ferroptosis suppressor. Thus, FGF21 activation may provide an effective strategy for the potential treatment of iron overload-induced ferroptosis-related diseases, such as hereditary haemochromatosis (HH).