Cargando…

Activation of anionic redox in d(0) transition metal chalcogenides by anion doping

Expanding the chemical space for designing novel anionic redox materials from oxides to sulfides has enabled to better apprehend fundamental aspects dealing with cationic-anionic relative band positioning. Pursuing with chalcogenides, but deviating from cationic substitution, we here present another...

Descripción completa

Detalles Bibliográficos
Autores principales: Leube, Bernhard T., Robert, Clara, Foix, Dominique, Porcheron, Benjamin, Dedryvère, Remi, Rousse, Gwenaëlle, Salager, Elodie, Cabelguen, Pierre-Etienne, Abakumov, Artem M., Vezin, Hervé, Doublet, Marie-Liesse, Tarascon, Jean-Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445930/
https://www.ncbi.nlm.nih.gov/pubmed/34531403
http://dx.doi.org/10.1038/s41467-021-25760-8
_version_ 1784568762487275520
author Leube, Bernhard T.
Robert, Clara
Foix, Dominique
Porcheron, Benjamin
Dedryvère, Remi
Rousse, Gwenaëlle
Salager, Elodie
Cabelguen, Pierre-Etienne
Abakumov, Artem M.
Vezin, Hervé
Doublet, Marie-Liesse
Tarascon, Jean-Marie
author_facet Leube, Bernhard T.
Robert, Clara
Foix, Dominique
Porcheron, Benjamin
Dedryvère, Remi
Rousse, Gwenaëlle
Salager, Elodie
Cabelguen, Pierre-Etienne
Abakumov, Artem M.
Vezin, Hervé
Doublet, Marie-Liesse
Tarascon, Jean-Marie
author_sort Leube, Bernhard T.
collection PubMed
description Expanding the chemical space for designing novel anionic redox materials from oxides to sulfides has enabled to better apprehend fundamental aspects dealing with cationic-anionic relative band positioning. Pursuing with chalcogenides, but deviating from cationic substitution, we here present another twist to our band positioning strategy that relies on mixed ligands with the synthesis of the Li(2)TiS(3-x)Se(x) solid solution series. Through the series the electrochemical activity displays a bell shape variation that peaks at 260 mAh/g for the composition x = 0.6 with barely no capacity for the x = 0 and x = 3 end members. We show that this capacity results from cumulated anionic (Se(2−)/Se(n−)) and (S(2−)/S(n−)) and cationic Ti(3+)/Ti(4+) redox processes and provide evidence for a metal-ligand charge transfer by temperature-driven electron localization. Moreover, DFT calculations reveal that an anionic redox process cannot take place without the dynamic involvement of the transition metal electronic states. These insights can guide the rational synthesis of other Li-rich chalcogenides that are of interest for the development of solid-state batteries.
format Online
Article
Text
id pubmed-8445930
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84459302021-10-04 Activation of anionic redox in d(0) transition metal chalcogenides by anion doping Leube, Bernhard T. Robert, Clara Foix, Dominique Porcheron, Benjamin Dedryvère, Remi Rousse, Gwenaëlle Salager, Elodie Cabelguen, Pierre-Etienne Abakumov, Artem M. Vezin, Hervé Doublet, Marie-Liesse Tarascon, Jean-Marie Nat Commun Article Expanding the chemical space for designing novel anionic redox materials from oxides to sulfides has enabled to better apprehend fundamental aspects dealing with cationic-anionic relative band positioning. Pursuing with chalcogenides, but deviating from cationic substitution, we here present another twist to our band positioning strategy that relies on mixed ligands with the synthesis of the Li(2)TiS(3-x)Se(x) solid solution series. Through the series the electrochemical activity displays a bell shape variation that peaks at 260 mAh/g for the composition x = 0.6 with barely no capacity for the x = 0 and x = 3 end members. We show that this capacity results from cumulated anionic (Se(2−)/Se(n−)) and (S(2−)/S(n−)) and cationic Ti(3+)/Ti(4+) redox processes and provide evidence for a metal-ligand charge transfer by temperature-driven electron localization. Moreover, DFT calculations reveal that an anionic redox process cannot take place without the dynamic involvement of the transition metal electronic states. These insights can guide the rational synthesis of other Li-rich chalcogenides that are of interest for the development of solid-state batteries. Nature Publishing Group UK 2021-09-16 /pmc/articles/PMC8445930/ /pubmed/34531403 http://dx.doi.org/10.1038/s41467-021-25760-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Leube, Bernhard T.
Robert, Clara
Foix, Dominique
Porcheron, Benjamin
Dedryvère, Remi
Rousse, Gwenaëlle
Salager, Elodie
Cabelguen, Pierre-Etienne
Abakumov, Artem M.
Vezin, Hervé
Doublet, Marie-Liesse
Tarascon, Jean-Marie
Activation of anionic redox in d(0) transition metal chalcogenides by anion doping
title Activation of anionic redox in d(0) transition metal chalcogenides by anion doping
title_full Activation of anionic redox in d(0) transition metal chalcogenides by anion doping
title_fullStr Activation of anionic redox in d(0) transition metal chalcogenides by anion doping
title_full_unstemmed Activation of anionic redox in d(0) transition metal chalcogenides by anion doping
title_short Activation of anionic redox in d(0) transition metal chalcogenides by anion doping
title_sort activation of anionic redox in d(0) transition metal chalcogenides by anion doping
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445930/
https://www.ncbi.nlm.nih.gov/pubmed/34531403
http://dx.doi.org/10.1038/s41467-021-25760-8
work_keys_str_mv AT leubebernhardt activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT robertclara activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT foixdominique activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT porcheronbenjamin activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT dedryvereremi activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT roussegwenaelle activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT salagerelodie activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT cabelguenpierreetienne activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT abakumovartemm activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT vezinherve activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT doubletmarieliesse activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping
AT tarasconjeanmarie activationofanionicredoxind0transitionmetalchalcogenidesbyaniondoping