Cargando…
Intraoral image generation by progressive growing of generative adversarial network and evaluation of generated image quality by dentists
Dentists need experience with clinical cases to practice specialized skills. However, the need to protect patient's private information limits their ability to utilize intraoral images obtained from clinical cases. In this study, since generating realistic images could make it possible to utili...
Autores principales: | Kokomoto, Kazuma, Okawa, Rena, Nakano, Kazuhiko, Nozaki, Kazunori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445945/ https://www.ncbi.nlm.nih.gov/pubmed/34531514 http://dx.doi.org/10.1038/s41598-021-98043-3 |
Ejemplares similares
-
An Image Turing Test on Realistic Gastroscopy Images Generated by Using the Progressive Growing of Generative Adversarial Networks
por: Shin, Keewon, et al.
Publicado: (2023) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022) -
Dental effects of enzyme replacement therapy in case of childhood-type hypophosphatasia
por: Okawa, Rena, et al.
Publicado: (2021) -
Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
por: Kim, Mingyu, et al.
Publicado: (2021)