Cargando…

Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot

The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator....

Descripción completa

Detalles Bibliográficos
Autores principales: Valmorra, F., Yoshida, K., Contamin, L. C., Messelot, S., Massabeau, S., Delbecq, M. R., Dartiailh, M. C., Desjardins, M. M., Cubaynes, T., Leghtas, Z., Hirakawa, K., Tignon, J., Dhillon, S., Balibar, S., Mangeney, J., Cottet, A., Kontos, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446012/
https://www.ncbi.nlm.nih.gov/pubmed/34531384
http://dx.doi.org/10.1038/s41467-021-25733-x
Descripción
Sumario:The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics.