Cargando…

Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot

The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator....

Descripción completa

Detalles Bibliográficos
Autores principales: Valmorra, F., Yoshida, K., Contamin, L. C., Messelot, S., Massabeau, S., Delbecq, M. R., Dartiailh, M. C., Desjardins, M. M., Cubaynes, T., Leghtas, Z., Hirakawa, K., Tignon, J., Dhillon, S., Balibar, S., Mangeney, J., Cottet, A., Kontos, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446012/
https://www.ncbi.nlm.nih.gov/pubmed/34531384
http://dx.doi.org/10.1038/s41467-021-25733-x
_version_ 1784568783944286208
author Valmorra, F.
Yoshida, K.
Contamin, L. C.
Messelot, S.
Massabeau, S.
Delbecq, M. R.
Dartiailh, M. C.
Desjardins, M. M.
Cubaynes, T.
Leghtas, Z.
Hirakawa, K.
Tignon, J.
Dhillon, S.
Balibar, S.
Mangeney, J.
Cottet, A.
Kontos, T.
author_facet Valmorra, F.
Yoshida, K.
Contamin, L. C.
Messelot, S.
Massabeau, S.
Delbecq, M. R.
Dartiailh, M. C.
Desjardins, M. M.
Cubaynes, T.
Leghtas, Z.
Hirakawa, K.
Tignon, J.
Dhillon, S.
Balibar, S.
Mangeney, J.
Cottet, A.
Kontos, T.
author_sort Valmorra, F.
collection PubMed
description The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics.
format Online
Article
Text
id pubmed-8446012
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84460122021-10-04 Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot Valmorra, F. Yoshida, K. Contamin, L. C. Messelot, S. Massabeau, S. Delbecq, M. R. Dartiailh, M. C. Desjardins, M. M. Cubaynes, T. Leghtas, Z. Hirakawa, K. Tignon, J. Dhillon, S. Balibar, S. Mangeney, J. Cottet, A. Kontos, T. Nat Commun Article The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics. Nature Publishing Group UK 2021-09-16 /pmc/articles/PMC8446012/ /pubmed/34531384 http://dx.doi.org/10.1038/s41467-021-25733-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Valmorra, F.
Yoshida, K.
Contamin, L. C.
Messelot, S.
Massabeau, S.
Delbecq, M. R.
Dartiailh, M. C.
Desjardins, M. M.
Cubaynes, T.
Leghtas, Z.
Hirakawa, K.
Tignon, J.
Dhillon, S.
Balibar, S.
Mangeney, J.
Cottet, A.
Kontos, T.
Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
title Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
title_full Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
title_fullStr Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
title_full_unstemmed Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
title_short Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
title_sort vacuum-field-induced thz transport gap in a carbon nanotube quantum dot
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446012/
https://www.ncbi.nlm.nih.gov/pubmed/34531384
http://dx.doi.org/10.1038/s41467-021-25733-x
work_keys_str_mv AT valmorraf vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT yoshidak vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT contaminlc vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT messelots vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT massabeaus vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT delbecqmr vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT dartiailhmc vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT desjardinsmm vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT cubaynest vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT leghtasz vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT hirakawak vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT tignonj vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT dhillons vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT balibars vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT mangeneyj vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT cotteta vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot
AT kontost vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot