Cargando…
Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator....
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446012/ https://www.ncbi.nlm.nih.gov/pubmed/34531384 http://dx.doi.org/10.1038/s41467-021-25733-x |
_version_ | 1784568783944286208 |
---|---|
author | Valmorra, F. Yoshida, K. Contamin, L. C. Messelot, S. Massabeau, S. Delbecq, M. R. Dartiailh, M. C. Desjardins, M. M. Cubaynes, T. Leghtas, Z. Hirakawa, K. Tignon, J. Dhillon, S. Balibar, S. Mangeney, J. Cottet, A. Kontos, T. |
author_facet | Valmorra, F. Yoshida, K. Contamin, L. C. Messelot, S. Massabeau, S. Delbecq, M. R. Dartiailh, M. C. Desjardins, M. M. Cubaynes, T. Leghtas, Z. Hirakawa, K. Tignon, J. Dhillon, S. Balibar, S. Mangeney, J. Cottet, A. Kontos, T. |
author_sort | Valmorra, F. |
collection | PubMed |
description | The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics. |
format | Online Article Text |
id | pubmed-8446012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84460122021-10-04 Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot Valmorra, F. Yoshida, K. Contamin, L. C. Messelot, S. Massabeau, S. Delbecq, M. R. Dartiailh, M. C. Desjardins, M. M. Cubaynes, T. Leghtas, Z. Hirakawa, K. Tignon, J. Dhillon, S. Balibar, S. Mangeney, J. Cottet, A. Kontos, T. Nat Commun Article The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics. Nature Publishing Group UK 2021-09-16 /pmc/articles/PMC8446012/ /pubmed/34531384 http://dx.doi.org/10.1038/s41467-021-25733-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Valmorra, F. Yoshida, K. Contamin, L. C. Messelot, S. Massabeau, S. Delbecq, M. R. Dartiailh, M. C. Desjardins, M. M. Cubaynes, T. Leghtas, Z. Hirakawa, K. Tignon, J. Dhillon, S. Balibar, S. Mangeney, J. Cottet, A. Kontos, T. Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot |
title | Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot |
title_full | Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot |
title_fullStr | Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot |
title_full_unstemmed | Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot |
title_short | Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot |
title_sort | vacuum-field-induced thz transport gap in a carbon nanotube quantum dot |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446012/ https://www.ncbi.nlm.nih.gov/pubmed/34531384 http://dx.doi.org/10.1038/s41467-021-25733-x |
work_keys_str_mv | AT valmorraf vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT yoshidak vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT contaminlc vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT messelots vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT massabeaus vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT delbecqmr vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT dartiailhmc vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT desjardinsmm vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT cubaynest vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT leghtasz vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT hirakawak vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT tignonj vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT dhillons vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT balibars vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT mangeneyj vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT cotteta vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot AT kontost vacuumfieldinducedthztransportgapinacarbonnanotubequantumdot |