Cargando…

A multifunctional ultrathin flexible bianisotropic metasurface with miniaturized cell size

In this paper, a flexible bianisotropic metasurface possessing omega-type coupling is presented. The designed metasurface behaves differently when excited from either forward (port 1) or back (port 2) sides. It provides an absorption of 99.46% at 15.1 Gigahertz (GHz), when illuminated from port 1, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamoor, Tania, Shoaib, Nosherwan, Ahmed, Fahad, Hassan, Tayyab, Quddious, Abdul, Nikolaou, Symeon, Alomainy, Akram, Imran, Muhammad Ali, Abbasi, Qammer H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446018/
https://www.ncbi.nlm.nih.gov/pubmed/34531453
http://dx.doi.org/10.1038/s41598-021-97930-z
Descripción
Sumario:In this paper, a flexible bianisotropic metasurface possessing omega-type coupling is presented. The designed metasurface behaves differently when excited from either forward (port 1) or back (port 2) sides. It provides an absorption of 99.46% at 15.1 Gigahertz (GHz), when illuminated from port 1, whereas, on simultaneous illumination from port 2, it behaves like a partially reflective surface (PRS). Furthermore, the presented metasurface not only acts as an in-band absorptive surface (port 1) and partially reflective surface (port 2), but it also provides 97% out-of-band transmission at 7.8 GHz. The response of the presented metasurface remains the same for both transverse Electric (TE) and transverse magnetic (TM) polarized wave or any arbitrary linearly polarized wave. Additionally, the response of the metasurface is angularly stable for any oblique incidence up to 45º. The proposed ultrathin flexible metasurface with absorption, partial reflection and out-of-band transmission properties can be used in the Fabry Perrot cavity antenna for gain enhancement with radar cross-section (RCS) reduction both for passband and stop-band filtering, and conformal antenna applications.