Cargando…
Using Machine Learning Techniques to Predict Factors Contributing to the Incidence of Metabolic Syndrome in Tehran: Cohort Study
BACKGROUND: Metabolic syndrome (MetS), a major contributor to cardiovascular disease and diabetes, is considered to be among the most common public health problems worldwide. OBJECTIVE: We aimed to identify and rank the most important nutritional and nonnutritional factors contributing to the develo...
Autores principales: | Hosseini-Esfahani, Firoozeh, Alafchi, Behnaz, Cheraghi, Zahra, Doosti-Irani, Amin, Mirmiran, Parvin, Khalili, Davood, Azizi, Fereidoun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446845/ https://www.ncbi.nlm.nih.gov/pubmed/34473070 http://dx.doi.org/10.2196/27304 |
Ejemplares similares
-
The association of priori and posteriori dietary patterns with the risk of incident hypertension: Tehran Lipid and Glucose Study
por: Ramezankhani, Azra, et al.
Publicado: (2021) -
Diet quality indices and the risk of type 2 diabetes in the Tehran Lipid and Glucose Study
por: Esfandiar, Zohreh, et al.
Publicado: (2022) -
Reproducibility and Relative Validity of Food Group Intake in a Food Frequency Questionnaire Developed for the Tehran Lipid and Glucose Study
por: Hosseini Esfahani, Firoozeh, et al.
Publicado: (2010) -
Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study
por: Hosseini-Esfahani, Firoozeh, et al.
Publicado: (2011) -
Empirical dietary inflammatory pattern and risk of metabolic syndrome and its components: Tehran Lipid and Glucose Study
por: Shakeri, Zeinab, et al.
Publicado: (2019)