Cargando…
Probing Heterogeneity in Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy (ATR-SEIRAS) Response with Synchrotron Infrared Microspectroscopy
The heterogeneity of metal island films electrodeposited on conductive metal oxide modified internal reflection elements is shown to provide a variable attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) response. A self-assembled monolayer of a ferrocene-termi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446892/ https://www.ncbi.nlm.nih.gov/pubmed/33709793 http://dx.doi.org/10.1177/00037028211005817 |
Sumario: | The heterogeneity of metal island films electrodeposited on conductive metal oxide modified internal reflection elements is shown to provide a variable attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) response. A self-assembled monolayer of a ferrocene-terminated thiol monolayer (FcC(11)SH) was formed on the gold islands covering a single substrate, which was measured using both a conventional spectrometer and a custom-built horizontal microscope. Cyclic voltammetry and ATR-SEIRAS results reveal that the FcC(11)SH-modified substrate undergoes a reversible electron transfer and an associated re-orientation of both the ferrocene/ferrocenium headgroup and the hydrocarbon backbone. The magnitude of the absorption signal arising from the redox changes in the monolayer, as well as the IR signature arising from the ingress/egress of the perchlorate counterions, is shown to depend significantly on the size of the infrared beam spot when using a conventional Fourier transform infrared spectrometer. By performing equivalent measurements on a horizontal microscope, the primary cause of the differences in the signal level is found to be the heterogeneity in the density of gold islands on the conductive metal oxide. |
---|