Cargando…
Drone-based entanglement distribution towards mobile quantum networks
Satellites have shown free-space quantum-communication ability; however, they are orbit-limited from full-time all-location coverage. Meanwhile, practical quantum networks require satellite constellations, which are complicated and expensive, whereas the airborne mobile quantum communication may be...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446934/ https://www.ncbi.nlm.nih.gov/pubmed/34691535 http://dx.doi.org/10.1093/nsr/nwz227 |
Sumario: | Satellites have shown free-space quantum-communication ability; however, they are orbit-limited from full-time all-location coverage. Meanwhile, practical quantum networks require satellite constellations, which are complicated and expensive, whereas the airborne mobile quantum communication may be a practical alternative to offering full-time all-location multi-weather coverage in a cost-effective way. Here, we demonstrate the first mobile entanglement distribution based on drones, realizing multi-weather operation including daytime and rainy nights, with a Clauser-Horne-Shimony-Holt S-parameter measured to be 2.41 ± 0.14 and 2.49 ± 0.06, respectively. Such a system shows unparalleled mobility, flexibility and reconfigurability compared to the existing satellite and fiber-based quantum communication, and reveals its potential to establish a multinode quantum network, with a scalable design using symmetrical lens diameter and single-mode-fiber coupling. All key technologies have been developed to pack quantum nodes into lightweight mobile platforms for local-area coverage, and arouse further technical improvements to establish wide-area quantum networks with high-altitude mobile communication. |
---|