Cargando…
Decreased nocturnal heart rate variability and potentially related brain regions in arteriosclerotic cerebral small vessel disease
BACKGROUND: To assess heart rate variability (HRV) among patients with arteriosclerotic cerebral small vessel disease (CSVD) by comparing with control subjects, and to determine whether HRV parameters were related to structural alterations in brain regions involved in autonomic regulation among CSVD...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447504/ https://www.ncbi.nlm.nih.gov/pubmed/34530764 http://dx.doi.org/10.1186/s12883-021-02388-1 |
Sumario: | BACKGROUND: To assess heart rate variability (HRV) among patients with arteriosclerotic cerebral small vessel disease (CSVD) by comparing with control subjects, and to determine whether HRV parameters were related to structural alterations in brain regions involved in autonomic regulation among CSVD patients. METHODS: We consecutively recruited subjects aged between 50 and 80 years who visited the Stroke Prevention Clinic of our hospital and have completed brain magnetic resonance imaging examination from September 1, 2018 to August 31, 2019. Polysomnography and synchronous analyses of HRV were then performed in all participants. Multivariable binary logistic regression was used to identify the relationship between HRV parameters and CSVD. Participants were invited to further undergo three-dimensional brain volume scan, and the voxel based morphometry (VBM) analysis was used to identify gray matter atrophy. RESULTS: Among 109 participants enrolled in this study, 63 were assigned to the arteriosclerotic CSVD group and 46 to the control group. Lower standard deviation of normal-to-normal intervals (SDNN, OR = 0.943, 95% CI 0.903 to 0.985, P = 0.009) and higher ratio of low to high frequency power (LF/HF, OR = 4.372, 95% CI 1.033 to 18.508, P = 0.045) during the sleep period were associated with CSVD, independent of traditional cerebrovascular risk factors and sleep disordered breathing. A number of 24 CSVD patients and 21 controls further underwent three-dimensional brain volume scan and VBM analysis. Based on VBM results, SDNN during the awake time (β = 0.544, 95% CI 0.211 to 0.877, P = 0.001) and the sleep period (β = 0.532, 95% CI 0.202 to 0.862, P = 0.001) were both positively related with gray matter volume within the right inferior frontal gyrus only among CSVD patients. CONCLUSIONS: Decreased nocturnal HRV is associated with arteriosclerotic CSVD independent of traditional cerebrovascular risk factors and sleep disordered breathing. The structural atrophy of some brain regions associated with cardiac autonomic regulation sheds light on the potential relationship. TRIAL REGISTRATION: Trial registration number: ChiCTR1800017902. Date of registration: 20 Aug 2018. |
---|