Cargando…
Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction
BACKGROUND: Statistical boosting is a computational approach to select and estimate interpretable prediction models for high-dimensional biomedical data, leading to implicit regularization and variable selection when combined with early stopping. Traditionally, the set of base-learners is fixed for...
Autores principales: | Staerk, Christian, Mayr, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447543/ https://www.ncbi.nlm.nih.gov/pubmed/34530737 http://dx.doi.org/10.1186/s12859-021-04340-z |
Ejemplares similares
-
Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data
por: Xiong, Lie, et al.
Publicado: (2015) -
Stochastic variational variable selection for high-dimensional microbiome data
por: Dang, Tung, et al.
Publicado: (2022) -
Controlling false discoveries in high-dimensional situations: boosting with stability selection
por: Hofner, Benjamin, et al.
Publicado: (2015) -
Combined performance of screening and variable selection methods in ultra-high dimensional data in predicting time-to-event outcomes
por: Pi, Lira, et al.
Publicado: (2018) -
Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection
por: Mayr, Andreas, et al.
Publicado: (2016)