Cargando…
Estimation of postpartum depression risk from electronic health records using machine learning
BACKGROUND: Postpartum depression is a widespread disorder, adversely affecting the well-being of mothers and their newborns. We aim to utilize machine learning for predicting risk of postpartum depression (PPD) using primary care electronic health records (EHR) data, and to evaluate the potential v...
Autores principales: | Amit, Guy, Girshovitz, Irena, Marcus, Karni, Zhang, Yiye, Pathak, Jyotishman, Bar, Vered, Akiva, Pinchas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447665/ https://www.ncbi.nlm.nih.gov/pubmed/34535116 http://dx.doi.org/10.1186/s12884-021-04087-8 |
Ejemplares similares
-
Estimating the effect of cesarean delivery on long-term childhood health across two countries
por: Keshet, Ayya, et al.
Publicado: (2022) -
Subphenotyping depression using machine learning and electronic health records
por: Xu, Zhenxing, et al.
Publicado: (2020) -
Bias in Recording of Body Mass Index Data in the Electronic Health Record
por: Rea, Susan, et al.
Publicado: ( 201) -
Electronic health records and blockchain interoperability requirements: a scoping review
por: Schmeelk, Suzanna, et al.
Publicado: (2022) -
Automated classification of lay health articles using natural language processing: a case study on pregnancy health and postpartum depression
por: Patra, Braja Gopal, et al.
Publicado: (2023)