Cargando…
Predicting outcomes of psychotherapy for depression with electronic health record data
Predictive analytics with electronic health record (EHR) data holds promise for improving outcomes of psychiatric care. This study evaluated models for predicting outcomes of psychotherapy for depression in a clinical practice setting. EHR data from two large integrated health systems (Kaiser Perman...
Autores principales: | Coley, R Yates, Boggs, Jennifer M, Beck, Arne, Simon, Gregory E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448296/ https://www.ncbi.nlm.nih.gov/pubmed/34541567 http://dx.doi.org/10.1016/j.jadr.2021.100198 |
Ejemplares similares
-
Complex modeling with detailed temporal predictors does not improve health records-based suicide risk prediction
por: Shortreed, Susan M., et al.
Publicado: (2023) -
Assessing and Minimizing Re-identification Risk in Research Data Derived from Health Care Records
por: Simon, Gregory E., et al.
Publicado: (2019) -
Monitoring Depression Rates in an Urban Community: Use of Electronic Health Records
por: Davidson, Arthur J., et al.
Publicado: (2018) -
Empirical evaluation of internal validation methods for prediction in large-scale clinical data with rare-event outcomes: a case study in suicide risk prediction
por: Coley, R Yates, et al.
Publicado: (2023) -
Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review
por: Nickson, David, et al.
Publicado: (2023)