Cargando…

Cell-free electrophysiology of human VDACs incorporated into nanodiscs: An improved method

Voltage-dependent anion-selective channel (VDAC) is one of the main proteins of the outer mitochondrial membrane of all eukaryotes, where it forms aqueous, voltage-sensitive, and ion-selective channels. Its electrophysiological properties have been thoroughly analyzed with the planar lipid bilayer t...

Descripción completa

Detalles Bibliográficos
Autores principales: Conti Nibali, Stefano, Di Rosa, Maria Carmela, Rauh, Oliver, Thiel, Gerhard, Reina, Simona, De Pinto, Vito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448298/
https://www.ncbi.nlm.nih.gov/pubmed/34568862
http://dx.doi.org/10.1016/j.bpr.2021.100002
Descripción
Sumario:Voltage-dependent anion-selective channel (VDAC) is one of the main proteins of the outer mitochondrial membrane of all eukaryotes, where it forms aqueous, voltage-sensitive, and ion-selective channels. Its electrophysiological properties have been thoroughly analyzed with the planar lipid bilayer technique. To date, however, available results are based on isolations of VDACs from tissue or from recombinant VDACs produced in bacterial systems. It is well known that the cytosolic overexpression of highly hydrophobic membrane proteins often results in the formation of inclusion bodies containing insoluble aggregates. Purification of properly folded proteins and restoration of their full biological activity requires several procedures that considerably lengthen experimental times. To overcome these restraints, we propose a one-step reaction that combines in vitro cell-free protein expression with nanodisc technology to obtain human VDAC isoforms directly integrated in a native-like lipid bilayer. Reconstitution assays into artificial membranes confirm the reliability of this new methodological approach and provide results comparable to those of VDACs prepared with traditional protein isolation and reconstitution protocols. The use of membrane-mimicking nanodisc systems represents a breakthrough in VDAC electrophysiology and may be adopted to further structural studies.