Cargando…
PARROT is a flexible recurrent neural network framework for analysis of large protein datasets
The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine lea...
Autores principales: | Griffith, Daniel, Holehouse, Alex S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448528/ https://www.ncbi.nlm.nih.gov/pubmed/34533455 http://dx.doi.org/10.7554/eLife.70576 |
Ejemplares similares
-
Fast and flexible sequence induction in spiking neural networks via rapid excitability changes
por: Pang, Rich, et al.
Publicado: (2019) -
Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks
por: Miconi, Thomas
Publicado: (2017) -
Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies
por: Ovchinnikov, Victor, et al.
Publicado: (2018) -
Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics
por: Baranwal, Mayank, et al.
Publicado: (2022) -
ProteInfer, deep neural networks for protein functional inference
por: Sanderson, Theo, et al.
Publicado: (2023)