Cargando…
Sensor Fault Diagnosis Method Based on α-Grey Wolf Optimization-Support Vector Machine
Aimed to address the low diagnostic accuracy caused by the similar data distribution of sensor partial faults, a sensor fault diagnosis method is proposed on the basis of α Grey Wolf Optimization Support Vector Machine (α-GWO-SVM) in this paper. Firstly, a fusion with Kernel Principal Component Anal...
Autores principales: | Cheng, Xuezhen, Wang, Dafei, Xu, Chuannuo, Li, Jiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448603/ https://www.ncbi.nlm.nih.gov/pubmed/34539769 http://dx.doi.org/10.1155/2021/1956394 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
por: Shen, Weijie, et al.
Publicado: (2023) -
Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine
por: Saxena, Akash, et al.
Publicado: (2017) -
Rapid Identification of Soybean Varieties by Terahertz Frequency-Domain Spectroscopy and Grey Wolf Optimizer-Support Vector Machine
por: Wei, Xiao, et al.
Publicado: (2022) -
Developing a Novel Method for Estimating the Speed of Sound in Biodiesel Known as Grey Wolf Optimizer Support Vector Machine Algorithm
por: Lv, Zhenzhen, et al.
Publicado: (2021) -
A Comprehensive Diagnosis Method of Rolling Bearing Fault Based on CEEMDAN-DFA-Improved Wavelet Threshold Function and QPSO-MPE-SVM
por: Wang, Yi, et al.
Publicado: (2021)