Cargando…
Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma
In patients with suspected lymphoma, the tissue biopsy provides lymphoma confirmation, classification, and prognostic factors, including genetic changes. We developed a deep learning algorithm to detect MYC rearrangement in scanned histological slides of diffuse large B-cell lymphoma. The H&E-st...
Autores principales: | Swiderska-Chadaj, Zaneta, Hebeda, Konnie M., van den Brand, Michiel, Litjens, Geert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448690/ https://www.ncbi.nlm.nih.gov/pubmed/32979109 http://dx.doi.org/10.1007/s00428-020-02931-4 |
Ejemplares similares
-
Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2020) -
A subset of low-grade B cell lymphomas with a follicular growth pattern but without a BCL2 translocation shows features suggestive of nodal marginal zone lymphoma
por: van den Brand, Michiel, et al.
Publicado: (2015) -
Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma
por: Schreuder, Max I., et al.
Publicado: (2017) -
Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
por: Gertych, Arkadiusz, et al.
Publicado: (2019) -
Content-based analysis of Ki-67 stained meningioma specimens for automatic hot-spot selection
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2016)