Cargando…
GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
Applying deep learning in population genomics is challenging because of computational issues and lack of interpretable models. Here, we propose GenNet, a novel open-source deep learning framework for predicting phenotypes from genetic variants. In this framework, interpretable and memory-efficient n...
Autores principales: | van Hilten, Arno, Kushner, Steven A., Kayser, Manfred, Ikram, M. Arfan, Adams, Hieab H. H., Klaver, Caroline C. W., Niessen, Wiro J., Roshchupkin, Gennady V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448759/ https://www.ncbi.nlm.nih.gov/pubmed/34535759 http://dx.doi.org/10.1038/s42003-021-02622-z |
Ejemplares similares
-
GenNet: A Platform for Hybrid Network Experiments
por: Kispersky, Tilman J., et al.
Publicado: (2011) -
Aging-Dependent Genetic Effects Associated to ADHD Predict Longitudinal Changes of Ventricular Volumes in Adulthood
por: Vilor-Tejedor, Natalia, et al.
Publicado: (2020) -
Full exploitation of high dimensionality in brain imaging: The JPND working group statement and findings
por: Adams, Hieab H.H., et al.
Publicado: (2019) -
GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis
por: Costa, Raquel L., et al.
Publicado: (2017) -
Genetic variation underlying cognition and its relation with neurological outcomes and brain imaging
por: Knol, Maria J., et al.
Publicado: (2019)