Cargando…

A method for intuitively extracting macromolecular dynamics from structural disorder

Macromolecular dynamics manifest as disorder in structure determination, which is subsequently accounted for by displacement parameters (also called temperature factors, or B-factors) or alternate conformations. Though B-factors contain detailed information about structural dynamics, they are the to...

Descripción completa

Detalles Bibliográficos
Autores principales: Pearce, Nicholas M., Gros, Piet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448762/
https://www.ncbi.nlm.nih.gov/pubmed/34535675
http://dx.doi.org/10.1038/s41467-021-25814-x
Descripción
Sumario:Macromolecular dynamics manifest as disorder in structure determination, which is subsequently accounted for by displacement parameters (also called temperature factors, or B-factors) or alternate conformations. Though B-factors contain detailed information about structural dynamics, they are the total of multiple sources of disorder, making them difficult to interpret and thus little-used in structural analysis. We report here an analytical approach for decomposing molecular disorder into a parsimonious hierarchical series of contributions, providing an intuitive basis for quantitative structural-dynamics analysis. We demonstrate the decomposition of disorder on example SARS-CoV-2 and STEAP4 structures, from both crystallographic and cryo-electron microscopy data, and reveal how understanding of the macromolecular disorder leads to deeper understanding of molecular motions and flexibility, and suggests hypotheses for molecular mechanisms.