Cargando…

Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte

Porous electrodes with extraordinary capacitances in liquid electrolytes are oftentimes incompetent when gel electrolyte is applied because of the escalating ion diffusion limitations brought by the difficulties of infilling the pores of electrode with gels. As a result, porous electrodes usually ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Kefeng, Yang, Taimin, Liang, Jiaxing, Rawal, Aditya, Liu, Huabo, Fang, Ruopian, Amal, Rose, Xu, Hongyi, Wang, Da-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448854/
https://www.ncbi.nlm.nih.gov/pubmed/34535670
http://dx.doi.org/10.1038/s41467-021-25817-8
_version_ 1784569324117164032
author Xiao, Kefeng
Yang, Taimin
Liang, Jiaxing
Rawal, Aditya
Liu, Huabo
Fang, Ruopian
Amal, Rose
Xu, Hongyi
Wang, Da-Wei
author_facet Xiao, Kefeng
Yang, Taimin
Liang, Jiaxing
Rawal, Aditya
Liu, Huabo
Fang, Ruopian
Amal, Rose
Xu, Hongyi
Wang, Da-Wei
author_sort Xiao, Kefeng
collection PubMed
description Porous electrodes with extraordinary capacitances in liquid electrolytes are oftentimes incompetent when gel electrolyte is applied because of the escalating ion diffusion limitations brought by the difficulties of infilling the pores of electrode with gels. As a result, porous electrodes usually exhibit lower capacitance in gel electrolytes than that in liquid electrolytes. Benefiting from the swift ion transport in intrinsic hydrated nanochannels, the electrochemical capacitance of the nanofluidic voidless electrode (5.56% porosity) is nearly equal in gel and liquid electrolytes with a difference of ~1.8%. In gel electrolyte, the areal capacitance reaches 8.94 F cm(−2) with a gravimetric capacitance of 178.8 F g(−1) and a volumetric capacitance of 321.8 F cm(−3). The findings are valuable to solid-state electrochemical energy storage technologies that require high-efficiency charge transport.
format Online
Article
Text
id pubmed-8448854
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84488542021-10-05 Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte Xiao, Kefeng Yang, Taimin Liang, Jiaxing Rawal, Aditya Liu, Huabo Fang, Ruopian Amal, Rose Xu, Hongyi Wang, Da-Wei Nat Commun Article Porous electrodes with extraordinary capacitances in liquid electrolytes are oftentimes incompetent when gel electrolyte is applied because of the escalating ion diffusion limitations brought by the difficulties of infilling the pores of electrode with gels. As a result, porous electrodes usually exhibit lower capacitance in gel electrolytes than that in liquid electrolytes. Benefiting from the swift ion transport in intrinsic hydrated nanochannels, the electrochemical capacitance of the nanofluidic voidless electrode (5.56% porosity) is nearly equal in gel and liquid electrolytes with a difference of ~1.8%. In gel electrolyte, the areal capacitance reaches 8.94 F cm(−2) with a gravimetric capacitance of 178.8 F g(−1) and a volumetric capacitance of 321.8 F cm(−3). The findings are valuable to solid-state electrochemical energy storage technologies that require high-efficiency charge transport. Nature Publishing Group UK 2021-09-17 /pmc/articles/PMC8448854/ /pubmed/34535670 http://dx.doi.org/10.1038/s41467-021-25817-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Xiao, Kefeng
Yang, Taimin
Liang, Jiaxing
Rawal, Aditya
Liu, Huabo
Fang, Ruopian
Amal, Rose
Xu, Hongyi
Wang, Da-Wei
Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte
title Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte
title_full Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte
title_fullStr Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte
title_full_unstemmed Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte
title_short Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte
title_sort nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448854/
https://www.ncbi.nlm.nih.gov/pubmed/34535670
http://dx.doi.org/10.1038/s41467-021-25817-8
work_keys_str_mv AT xiaokefeng nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT yangtaimin nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT liangjiaxing nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT rawaladitya nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT liuhuabo nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT fangruopian nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT amalrose nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT xuhongyi nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte
AT wangdawei nanofluidicvoidlesselectrodeforelectrochemicalcapacitanceenhancementingelelectrolyte