Cargando…
Application of Various Machine Learning Techniques in Predicting Total Organic Carbon from Well Logs
Unconventional resources have recently gained a lot of attention, and as a consequence, there has been an increase in research interest in predicting total organic carbon (TOC) as a crucial quality indicator. TOC is commonly measured experimentally; however, due to sampling restrictions, obtaining c...
Autores principales: | Siddig, Osama, Ibrahim, Ahmed Farid, Elkatatny, Salaheldin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448996/ https://www.ncbi.nlm.nih.gov/pubmed/34545282 http://dx.doi.org/10.1155/2021/7390055 |
Ejemplares similares
-
Utilization of Artificial Neural Network in Predicting the Total Organic Carbon in Devonian Shale Using the Conventional Well Logs and the Spectral Gamma Ray
por: Siddig, Osama, et al.
Publicado: (2021) -
Machine learning application to predict in-situ stresses from logging data
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2021) -
Estimation of rocks’ failure parameters from drilling data by using artificial neural network
por: Siddig, Osama, et al.
Publicado: (2023) -
Applications of
Different Classification Machine Learning
Techniques to Predict Formation Tops and Lithology While Drilling
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2023) -
Application of Machine Learning to Predict Estimated Ultimate Recovery for Multistage Hydraulically Fractured Wells in Niobrara Shale Formation
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2022)