Cargando…
Improving the Efficiency of Clinical Trial Recruitment Using an Ensemble Machine Learning to Assist With Eligibility Screening
OBJECTIVE: Efficiently identifying eligible patients is a crucial first step for a successful clinical trial. The objective of this study was to test whether an approach using electronic health record (EHR) data and an ensemble machine learning algorithm incorporating billing codes and data from cli...
Autores principales: | Cai, Tianrun, Cai, Fiona, Dahal, Kumar P., Cremone, Gabrielle, Lam, Ethan, Golnik, Charlotte, Seyok, Thany, Hong, Chuan, Cai, Tianxi, Liao, Katherine P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449035/ https://www.ncbi.nlm.nih.gov/pubmed/34296815 http://dx.doi.org/10.1002/acr2.11289 |
Ejemplares similares
-
Leveraging electronic health records data to predict multiple sclerosis disease activity
por: Ahuja, Yuri, et al.
Publicado: (2021) -
Temporal Trends in Clinical Evidence of 5-Year Survival Within Electronic Health Records Among Patients With Early-Stage Colon Cancer Managed With Laparoscopy-Assisted Colectomy vs Open Colectomy
por: Hou, Jue, et al.
Publicado: (2022) -
Identifying shared genetic architecture between rheumatoid arthritis and other conditions: a phenome-wide association study with genetic risk scores
por: Zhang, Harrison G., et al.
Publicado: (2023) -
Comparison of Dimethyl Fumarate vs Fingolimod and Rituximab vs Natalizumab for Treatment of Multiple Sclerosis
por: Hou, Jue, et al.
Publicado: (2021) -
Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Identify and Estimate Survival in a Longitudinal Cohort of Patients With Lung Cancer
por: Yuan, Qianyu, et al.
Publicado: (2021)