Cargando…
Rheological insights on the evolution of sonicated cellulose nanocrystal dispersions
Cellulose nanocrystals (CNCs) are promising biomaterials, but their tendency to agglomerate when dried limits their use in several applications. Ultrasonication is commonly used to disperse CNCs in water, bringing enough energy to the suspension to break agglomerates. While the optimized parameters...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449047/ https://www.ncbi.nlm.nih.gov/pubmed/34534796 http://dx.doi.org/10.1016/j.ultsonch.2021.105747 |
Sumario: | Cellulose nanocrystals (CNCs) are promising biomaterials, but their tendency to agglomerate when dried limits their use in several applications. Ultrasonication is commonly used to disperse CNCs in water, bringing enough energy to the suspension to break agglomerates. While the optimized parameters for sonication are now well defined for small volumes of low concentration CNC suspensions, a deeper understanding of the influence of the dispersing process is needed to work with larger volumes, at higher concentrations. Herein, rheology is used to define the distribution and dispersion states upon ultrasonication of a 3.2 wt% CNC suspension. After considering the importance of the measurement sampling volume, the behavior of a more concentrated suspension (6.4 wt%) is examined and compared with a never-dried suspension of the same concentration to validate the dispersion state. |
---|