Cargando…

Synthetic polycistronic sequences in eukaryotes

The need for co-ordinate, high-level, and stable expression of multiple genes is essential for the engineering of biosynthetic circuits and metabolic pathways. This work outlines the functionality and design of IRES- and 2 A-peptide-based constructs by comparing different strategies for co-expressio...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xuekun, Marchisio, Mario Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449083/
https://www.ncbi.nlm.nih.gov/pubmed/34584993
http://dx.doi.org/10.1016/j.synbio.2021.09.003
Descripción
Sumario:The need for co-ordinate, high-level, and stable expression of multiple genes is essential for the engineering of biosynthetic circuits and metabolic pathways. This work outlines the functionality and design of IRES- and 2 A-peptide-based constructs by comparing different strategies for co-expression in polycistronic vectors. In particular, 2 A sequences are small peptides, mostly derived from viral polyproteins, that mediate a ribosome-skipping event such that several, different, separate proteins can be generated from a single open reading frame. When applied to metabolic engineering and synthetic gene circuits, 2 A peptides permit to achieve co-regulated and reliable expression of various genes in eukaryotic cells.