Cargando…
Automated segmentation of deep brain nuclei using convolutional neural networks and susceptibility weighted imaging
The advent of susceptibility‐sensitive MRI techniques, such as susceptibility weighted imaging (SWI), has enabled accurate in vivo visualization and quantification of iron deposition within the human brain. Although previous approaches have been introduced to segment iron‐rich brain regions, such as...
Autores principales: | Beliveau, Vincent, Nørgaard, Martin, Birkl, Christoph, Seppi, Klaus, Scherfler, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449109/ https://www.ncbi.nlm.nih.gov/pubmed/34322940 http://dx.doi.org/10.1002/hbm.25604 |
Ejemplares similares
-
HFP‐QSMGAN: QSM from homodyne‐filtered phase images
por: Beliveau, Vincent, et al.
Publicado: (2022) -
Automated Analysis of Diffusion‐Weighted Magnetic Resonance Imaging for the Differential Diagnosis of Multiple System Atrophy from Parkinson's Disease
por: Krismer, Florian, et al.
Publicado: (2020) -
Revisiting brain iron deficiency in restless legs syndrome using magnetic resonance imaging
por: Beliveau, Vincent, et al.
Publicado: (2022) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sadanandan, Sajith Kecheril, et al.
Publicado: (2017) -
An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
por: Jung, Hwejin, et al.
Publicado: (2019)