Cargando…

Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality con...

Descripción completa

Detalles Bibliográficos
Autores principales: Drake, Joshua C., Wilson, Rebecca J., Laker, Rhianna C., Guan, Yuntian, Spaulding, Hannah R., Nichenko, Anna S., Shen, Wenqing, Shang, Huayu, Dorn, Maya V., Huang, Kian, Zhang, Mei, Bandara, Aloka B., Brisendine, Matthew H., Kashatus, Jennifer A., Sharma, Poonam R., Young, Alexander, Gautam, Jitendra, Cao, Ruofan, Wallrabe, Horst, Chang, Paul A., Wong, Michael, Desjardins, Eric M., Hawley, Simon A., Christ, George J., Kashatus, David F., Miller, Clint L., Wolf, Matthew J., Periasamy, Ammasi, Steinberg, Gregory R., Hardie, D. Grahame, Yan, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449344/
https://www.ncbi.nlm.nih.gov/pubmed/34493662
http://dx.doi.org/10.1073/pnas.2025932118
_version_ 1784569409426161664
author Drake, Joshua C.
Wilson, Rebecca J.
Laker, Rhianna C.
Guan, Yuntian
Spaulding, Hannah R.
Nichenko, Anna S.
Shen, Wenqing
Shang, Huayu
Dorn, Maya V.
Huang, Kian
Zhang, Mei
Bandara, Aloka B.
Brisendine, Matthew H.
Kashatus, Jennifer A.
Sharma, Poonam R.
Young, Alexander
Gautam, Jitendra
Cao, Ruofan
Wallrabe, Horst
Chang, Paul A.
Wong, Michael
Desjardins, Eric M.
Hawley, Simon A.
Christ, George J.
Kashatus, David F.
Miller, Clint L.
Wolf, Matthew J.
Periasamy, Ammasi
Steinberg, Gregory R.
Hardie, D. Grahame
Yan, Zhen
author_facet Drake, Joshua C.
Wilson, Rebecca J.
Laker, Rhianna C.
Guan, Yuntian
Spaulding, Hannah R.
Nichenko, Anna S.
Shen, Wenqing
Shang, Huayu
Dorn, Maya V.
Huang, Kian
Zhang, Mei
Bandara, Aloka B.
Brisendine, Matthew H.
Kashatus, Jennifer A.
Sharma, Poonam R.
Young, Alexander
Gautam, Jitendra
Cao, Ruofan
Wallrabe, Horst
Chang, Paul A.
Wong, Michael
Desjardins, Eric M.
Hawley, Simon A.
Christ, George J.
Kashatus, David F.
Miller, Clint L.
Wolf, Matthew J.
Periasamy, Ammasi
Steinberg, Gregory R.
Hardie, D. Grahame
Yan, Zhen
author_sort Drake, Joshua C.
collection PubMed
description Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5′ AMP-activated protein kinase (AMPKα1/α2/β2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.
format Online
Article
Text
id pubmed-8449344
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-84493442021-10-04 Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy Drake, Joshua C. Wilson, Rebecca J. Laker, Rhianna C. Guan, Yuntian Spaulding, Hannah R. Nichenko, Anna S. Shen, Wenqing Shang, Huayu Dorn, Maya V. Huang, Kian Zhang, Mei Bandara, Aloka B. Brisendine, Matthew H. Kashatus, Jennifer A. Sharma, Poonam R. Young, Alexander Gautam, Jitendra Cao, Ruofan Wallrabe, Horst Chang, Paul A. Wong, Michael Desjardins, Eric M. Hawley, Simon A. Christ, George J. Kashatus, David F. Miller, Clint L. Wolf, Matthew J. Periasamy, Ammasi Steinberg, Gregory R. Hardie, D. Grahame Yan, Zhen Proc Natl Acad Sci U S A Biological Sciences Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5′ AMP-activated protein kinase (AMPKα1/α2/β2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment. National Academy of Sciences 2021-09-14 2021-09-07 /pmc/articles/PMC8449344/ /pubmed/34493662 http://dx.doi.org/10.1073/pnas.2025932118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Drake, Joshua C.
Wilson, Rebecca J.
Laker, Rhianna C.
Guan, Yuntian
Spaulding, Hannah R.
Nichenko, Anna S.
Shen, Wenqing
Shang, Huayu
Dorn, Maya V.
Huang, Kian
Zhang, Mei
Bandara, Aloka B.
Brisendine, Matthew H.
Kashatus, Jennifer A.
Sharma, Poonam R.
Young, Alexander
Gautam, Jitendra
Cao, Ruofan
Wallrabe, Horst
Chang, Paul A.
Wong, Michael
Desjardins, Eric M.
Hawley, Simon A.
Christ, George J.
Kashatus, David F.
Miller, Clint L.
Wolf, Matthew J.
Periasamy, Ammasi
Steinberg, Gregory R.
Hardie, D. Grahame
Yan, Zhen
Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
title Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
title_full Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
title_fullStr Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
title_full_unstemmed Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
title_short Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
title_sort mitochondria-localized ampk responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449344/
https://www.ncbi.nlm.nih.gov/pubmed/34493662
http://dx.doi.org/10.1073/pnas.2025932118
work_keys_str_mv AT drakejoshuac mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT wilsonrebeccaj mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT lakerrhiannac mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT guanyuntian mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT spauldinghannahr mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT nichenkoannas mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT shenwenqing mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT shanghuayu mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT dornmayav mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT huangkian mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT zhangmei mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT bandaraalokab mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT brisendinematthewh mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT kashatusjennifera mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT sharmapoonamr mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT youngalexander mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT gautamjitendra mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT caoruofan mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT wallrabehorst mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT changpaula mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT wongmichael mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT desjardinsericm mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT hawleysimona mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT christgeorgej mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT kashatusdavidf mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT millerclintl mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT wolfmatthewj mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT periasamyammasi mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT steinberggregoryr mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT hardiedgrahame mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy
AT yanzhen mitochondrialocalizedampkrespondstolocalenergeticsandcontributestoexerciseandenergeticstressinducedmitophagy