Cargando…
Discovery of complex oxides via automated experiments and data science
The quest to identify materials with tailored properties is increasingly expanding into high-order composition spaces, with a corresponding combinatorial explosion in the number of candidate materials. A key challenge is to discover regions in composition space where materials have novel properties....
Autores principales: | Yang, Lusann, Haber, Joel A., Armstrong, Zan, Yang, Samuel J., Kan, Kevin, Zhou, Lan, Richter, Matthias H., Roat, Christopher, Wagner, Nicholas, Coram, Marc, Berndl, Marc, Riley, Patrick, Gregoire, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449358/ https://www.ncbi.nlm.nih.gov/pubmed/34508002 http://dx.doi.org/10.1073/pnas.2106042118 |
Ejemplares similares
-
Machine learning guided aptamer refinement and discovery
por: Bashir, Ali, et al.
Publicado: (2021) -
Assessing microscope image focus quality with deep learning
por: Yang, Samuel J., et al.
Publicado: (2018) -
Learning causal networks using inducible transcription factors and transcriptome‐wide time series
por: Hackett, Sean R, et al.
Publicado: (2020) -
Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts
por: Schiff, Lauren, et al.
Publicado: (2022) -
Progress and prospects for accelerating materials science with automated and autonomous workflows
por: Stein, Helge S., et al.
Publicado: (2019)