Cargando…

Thalamic control of cortical dynamics in a model of flexible motor sequencing

The neural mechanisms that generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortic...

Descripción completa

Detalles Bibliográficos
Autores principales: Logiaco, Laureline, Abbott, L.F., Escola, Sean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449509/
https://www.ncbi.nlm.nih.gov/pubmed/34077721
http://dx.doi.org/10.1016/j.celrep.2021.109090
Descripción
Sumario:The neural mechanisms that generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. We model the basal ganglia inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neurons can control cortical dynamics to generate specific motor output in a noise-robust way. Additionally, a single “preparatory” thalamocortical network can produce fast cortical dynamics that support rapid transitions between any pair of learned motifs. If the thalamic units associated with each sequence component are segregated, many motor outputs can be learned without interference and then combined in arbitrary orders for the flexible production of long and complex motor sequences.