Cargando…
Cost-Effectiveness of a Proteomic Test for Preterm Birth Prediction
BACKGROUND: Preterm birth (PTB) carries increased risk of short- and long-term health problems as well as higher healthcare costs. Current strategies using clinically accepted maternal risk factors (prior PTB, short cervix) can only identify a minority of singleton PTBs. OBJECTIVE: We modeled the co...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449551/ https://www.ncbi.nlm.nih.gov/pubmed/34548799 http://dx.doi.org/10.2147/CEOR.S325094 |
Sumario: | BACKGROUND: Preterm birth (PTB) carries increased risk of short- and long-term health problems as well as higher healthcare costs. Current strategies using clinically accepted maternal risk factors (prior PTB, short cervix) can only identify a minority of singleton PTBs. OBJECTIVE: We modeled the cost-effectiveness of a risk-screening-and-treat strategy versus usual care for commercially insured pregnant US women without clinically accepted PTB risk factors. The risk-screening-and-treat strategy included use of a novel PTB prognostic blood test (PreTRM(®)) in the 19th–20th week of pregnancy, followed by treatment with a combined regimen of multi-component high-intensity-case-management and pharmacologic interventions for the remainder of the pregnancy for women assessed as higher-risk by the test, and usual care in women without higher risk. METHODS: We built a cost-effectiveness model using a combined decision-tree/Markov approach and a US payer perspective. We modeled 1-week cycles of pregnancy from week 19 to birth (preterm or term) and assessed costs throughout the pregnancy, and further to 12-months post-delivery in mothers and 30-months in infants. PTB rates and costs were based on >40,000 mothers and infants from the HealthCore Integrated Research Database(®) with birth events in 2016. Estimates of test performance, treatment effectiveness, and other model inputs were derived from published literature. RESULTS: In the base case, the risk-screening-and-treat strategy dominated usual care with an estimated 870 fewer PTBs (20% reduction) and $54 million less in total cost ($863 net savings per pregnant woman). Reductions were projected for neonatal intensive care admissions (10%), overall length-of-stay (7%), and births <32 weeks (33%). Treatment effectiveness had the strongest influence on cost-effectiveness estimates. The risk-screening-and-treat strategy remained dominant in the majority of probabilistic sensitivity analysis simulations and model scenarios. CONCLUSION: Use of a novel prognostic test during pregnancy to identify women at risk of PTB combined with evidence-based treatment is estimated to reduce total costs while preventing PTBs and their consequences. |
---|