Cargando…
Machine learning for initial insulin estimation in hospitalized patients
OBJECTIVE: The study sought to determine whether machine learning can predict initial inpatient total daily dose (TDD) of insulin from electronic health records more accurately than existing guideline-based dosing recommendations. MATERIALS AND METHODS: Using electronic health records from a tertiar...
Autores principales: | Nguyen, Minh, Jankovic, Ivana, Kalesinskas, Laurynas, Baiocchi, Michael, Chen, Jonathan H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449602/ https://www.ncbi.nlm.nih.gov/pubmed/34279615 http://dx.doi.org/10.1093/jamia/ocab099 |
Ejemplares similares
-
Predicting the Need for Basal-Bolus Insulin in Hospitalized Patients With Hyperglycemia: Is Sliding Scale Sometimes the Answer?
por: Jankovic, Ivana, et al.
Publicado: (2021) -
Developing machine learning models to personalize care levels among emergency room patients for hospital admission
por: Nguyen, Minh, et al.
Publicado: (2021) -
ODNA: identification of organellar DNA by machine learning
por: Martin, Roman, et al.
Publicado: (2023) -
Computational drug repositioning of atorvastatin for ulcerative colitis
por: Bai, Lawrence, et al.
Publicado: (2021) -
MON-611 Using Machine Learning on Electronic Health Records to Predict Inpatient Glucose Levels and Physicians’ Insulin Dosing
por: Jankovic, Ivana, et al.
Publicado: (2020)