Cargando…
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
OBJECTIVE: Research on pharmacovigilance from social media data has focused on mining adverse drug events (ADEs) using annotated datasets, with publications generally focusing on 1 of 3 tasks: ADE classification, named entity recognition for identifying the span of ADE mentions, and ADE mention norm...
Autores principales: | Magge, Arjun, Tutubalina, Elena, Miftahutdinov, Zulfat, Alimova, Ilseyar, Dirkson, Anne, Verberne, Suzan, Weissenbacher, Davy, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449608/ https://www.ncbi.nlm.nih.gov/pubmed/34270701 http://dx.doi.org/10.1093/jamia/ocab114 |
Ejemplares similares
-
On Biomedical Named Entity Recognition: Experiments in Interlingual Transfer for Clinical and Social Media Texts
por: Miftahutdinov, Zulfat, et al.
Publicado: (2020) -
Deep neural networks and distant supervision for geographic location mention extraction
por: Magge, Arjun, et al.
Publicado: (2018) -
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
Comment on: “Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts”
por: Magge, Arjun, et al.
Publicado: (2019) -
Medical concept normalization in clinical trials with drug and disease representation learning
por: Miftahutdinov, Zulfat, et al.
Publicado: (2021)