Cargando…

Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae

The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Palermo, Gisele Cristina de Lima, Coutouné, Natalia, Bueno, João Gabriel Ribeiro, Maciel, Lucas Ferreira, dos Santos, Leandro Vieira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449651/
https://www.ncbi.nlm.nih.gov/pubmed/34313008
http://dx.doi.org/10.1111/1751-7915.13887
_version_ 1784569460151025664
author Palermo, Gisele Cristina de Lima
Coutouné, Natalia
Bueno, João Gabriel Ribeiro
Maciel, Lucas Ferreira
dos Santos, Leandro Vieira
author_facet Palermo, Gisele Cristina de Lima
Coutouné, Natalia
Bueno, João Gabriel Ribeiro
Maciel, Lucas Ferreira
dos Santos, Leandro Vieira
author_sort Palermo, Gisele Cristina de Lima
collection PubMed
description The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe(2+)/Mn(2+) transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
format Online
Article
Text
id pubmed-8449651
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-84496512021-09-24 Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae Palermo, Gisele Cristina de Lima Coutouné, Natalia Bueno, João Gabriel Ribeiro Maciel, Lucas Ferreira dos Santos, Leandro Vieira Microb Biotechnol Research Articles The development of high‐performance xylose‐fermenting yeast is essential to achieve feasible conversion of biomass‐derived sugars in lignocellulose‐based biorefineries. However, engineered C5‐strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non‐obvious regulatory network connection of both metabolisms using time‐course transcriptome analysis. Our results indicated the vacuolar Fe(2+)/Mn(2+) transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3‐fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe‐S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. John Wiley and Sons Inc. 2021-07-27 /pmc/articles/PMC8449651/ /pubmed/34313008 http://dx.doi.org/10.1111/1751-7915.13887 Text en © 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Palermo, Gisele Cristina de Lima
Coutouné, Natalia
Bueno, João Gabriel Ribeiro
Maciel, Lucas Ferreira
dos Santos, Leandro Vieira
Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
title Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
title_full Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
title_fullStr Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
title_full_unstemmed Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
title_short Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
title_sort exploring metal ion metabolisms to improve xylose fermentation in saccharomyces cerevisiae
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449651/
https://www.ncbi.nlm.nih.gov/pubmed/34313008
http://dx.doi.org/10.1111/1751-7915.13887
work_keys_str_mv AT palermogiselecristinadelima exploringmetalionmetabolismstoimprovexylosefermentationinsaccharomycescerevisiae
AT coutounenatalia exploringmetalionmetabolismstoimprovexylosefermentationinsaccharomycescerevisiae
AT buenojoaogabrielribeiro exploringmetalionmetabolismstoimprovexylosefermentationinsaccharomycescerevisiae
AT maciellucasferreira exploringmetalionmetabolismstoimprovexylosefermentationinsaccharomycescerevisiae
AT dossantosleandrovieira exploringmetalionmetabolismstoimprovexylosefermentationinsaccharomycescerevisiae