Cargando…
Improving Arabic Sentiment Analysis Using CNN-Based Architectures and Text Preprocessing
Sentiment analysis is an essential process which is important to many natural language applications. In this paper, we apply two models for Arabic sentiment analysis to the ASTD and ATDFS datasets, in both 2-class and multiclass forms. Model MC1 is a 2-layer CNN with global average pooling, followed...
Autores principales: | Mhamed, Mustafa, Sutcliffe, Richard, Sun, Xia, Feng, Jun, Almekhlafi, Eiad, Retta, Ephrem Afele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449738/ https://www.ncbi.nlm.nih.gov/pubmed/34545281 http://dx.doi.org/10.1155/2021/5538791 |
Ejemplares similares
-
Kiñit classification in Ethiopian chants, Azmaris and modern music: A new dataset and CNN benchmark
por: Retta, Ephrem Afele, et al.
Publicado: (2023) -
Preprocessing Arabic text on social media
por: Hegazi, Mohamed Osman, et al.
Publicado: (2021) -
Connecting Text Classification with Image Classification: A New Preprocessing Method for Implicit Sentiment Text Classification
por: Chen, Meikang, et al.
Publicado: (2022) -
Syntactic- and morphology-based text augmentation framework for Arabic sentiment analysis
por: Duwairi, Rehab, et al.
Publicado: (2021) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022)