Cargando…
A Hybrid Method to Predict Postoperative Survival of Lung Cancer Using Improved SMOTE and Adaptive SVM
Predicting postoperative survival of lung cancer patients (LCPs) is an important problem of medical decision-making. However, the imbalanced distribution of patient survival in the dataset increases the difficulty of prediction. Although the synthetic minority oversampling technique (SMOTE) can be u...
Autores principales: | Shen, Jiang, Wu, Jiachao, Xu, Man, Gan, Dan, An, Bang, Liu, Fusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449740/ https://www.ncbi.nlm.nih.gov/pubmed/34545291 http://dx.doi.org/10.1155/2021/2213194 |
Ejemplares similares
-
A Novel Ensemble Method for Imbalanced Data Learning: Bagging of Extrapolation-SMOTE SVM
por: Wang, Qi, et al.
Publicado: (2017) -
Computer-Aided Lung Nodule Recognition by SVM Classifier Based on Combination of Random Undersampling and SMOTE
por: Sui, Yuan, et al.
Publicado: (2015) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
A hybrid Stacking-SMOTE model for optimizing the prediction of autistic genes
por: Ismail, Eman, et al.
Publicado: (2023) -
An improved hybrid of SVM and SCAD for pathway analysis
por: Misman, Muhammad Faiz, et al.
Publicado: (2011)