Cargando…
Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration – an in silico analysis
Large bone defects remain a clinical challenge because they do not heal spontaneously. 3-D printed scaffolds are a promising treatment option for such critical defects. Recent scaffold design strategies have made use of computer modelling techniques to optimize scaffold design. In particular, scaffo...
Autores principales: | Perier-Metz, Camille, Duda, Georg N., Checa, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450217/ https://www.ncbi.nlm.nih.gov/pubmed/34097188 http://dx.doi.org/10.1007/s10237-021-01472-2 |
Ejemplares similares
-
A mechanobiological computer optimization framework to design scaffolds to enhance bone regeneration
por: Perier-Metz, Camille, et al.
Publicado: (2022) -
Mechano-Biological Computer Model of Scaffold-Supported Bone Regeneration: Effect of Bone Graft and Scaffold Structure on Large Bone Defect Tissue Patterning
por: Perier-Metz, Camille, et al.
Publicado: (2020) -
PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An in silico study
por: Jaber, Mahdi, et al.
Publicado: (2022) -
A 3D in Silico Multi-Tissue Evolution Model Highlights the Relevance of Local Strain Accumulation in Bone Fracture Remodeling
por: Perier-Metz, Camille, et al.
Publicado: (2022) -
Bone morphogenetic protein 2-induced cellular chemotaxis drives tissue patterning during critical-sized bone defect healing: an in silico study
por: Borgiani, Edoardo, et al.
Publicado: (2021)