Cargando…
Asymmetric impact of temperature on COVID-19 spread in India: Evidence from quantile-on-quantile regression approach
The emergence of new coronavirus (SARS-CoV-2) has become a significant public health issue worldwide. Some researchers have identified a positive link between temperature and COVID-19 cases. However, no detailed research has highlighted the impact of temperature on COVID-19 spread in India. This stu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450230/ https://www.ncbi.nlm.nih.gov/pubmed/35180949 http://dx.doi.org/10.1016/j.jtherbio.2021.103101 |
Sumario: | The emergence of new coronavirus (SARS-CoV-2) has become a significant public health issue worldwide. Some researchers have identified a positive link between temperature and COVID-19 cases. However, no detailed research has highlighted the impact of temperature on COVID-19 spread in India. This study aims to fill this research gap by investigating the impact of temperature on COVID-19 spread in the five most affected Indian states. Quantile-on-Quantile regression (QQR) approach is employed to examine in what manner the quantiles of temperature influence the quantiles of COVID-19 cases. Empirical results confirm an asymmetric and heterogenous impact of temperature on COVID-19 spread across lower and higher quantiles of both variables. The results indicate a significant positive impact of temperature on COVID-19 spread in the three Indian states (Maharashtra, Andhra Pradesh, and Karnataka), predominantly in both low and high quantiles. Whereas, the other two states (Tamil Nadu and Uttar Pradesh) exhibit a mixed trend, as the lower quantiles in both states have a negative effect. However, this negative effect becomes weak at middle and higher quantiles. These research findings offer valuable policy recommendations. |
---|