Cargando…
De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response
The rapid spread of COVID-19 and disruption of normal supply chains has resulted in severe shortages of personal protective equipment (PPE), particularly devices with few suppliers such as powered air-purifying respirators (PAPRs). A scarcity of information describing design and performance criteria...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450396/ https://www.ncbi.nlm.nih.gov/pubmed/34552915 http://dx.doi.org/10.3389/fbioe.2021.690905 |
_version_ | 1784569636023435264 |
---|---|
author | Kothakonda, Akshay Atta, Lyla Plana, Deborah Ward, Ferrous Davis, Chris Cramer, Avilash Moran, Robert Freake, Jacob Tian, Enze Mazor, Ofer Gorelik, Pavel Van, Christopher Hansen, Christopher Yang, Helen Li, Yao Sinha, Michael S. Li, Ju Yu, Sherry H. LeBoeuf, Nicole R. Sorger, Peter K. |
author_facet | Kothakonda, Akshay Atta, Lyla Plana, Deborah Ward, Ferrous Davis, Chris Cramer, Avilash Moran, Robert Freake, Jacob Tian, Enze Mazor, Ofer Gorelik, Pavel Van, Christopher Hansen, Christopher Yang, Helen Li, Yao Sinha, Michael S. Li, Ju Yu, Sherry H. LeBoeuf, Nicole R. Sorger, Peter K. |
author_sort | Kothakonda, Akshay |
collection | PubMed |
description | The rapid spread of COVID-19 and disruption of normal supply chains has resulted in severe shortages of personal protective equipment (PPE), particularly devices with few suppliers such as powered air-purifying respirators (PAPRs). A scarcity of information describing design and performance criteria for PAPRs represents a substantial barrier to mitigating shortages. We sought to apply open-source product development (OSPD) to PAPRs to enable alternative sources of supply and further innovation. We describe the design, prototyping, validation, and user testing of locally manufactured, modular, PAPR components, including filter cartridges and blower units, developed by the Greater Boston Pandemic Fabrication Team (PanFab). Two designs, one with a fully custom-made filter and blower unit housing, and the other with commercially available variants (the “Custom” and “Commercial” designs, respectively) were developed; the components in the Custom design are interchangeable with those in Commercial design, although the form factor differs. The engineering performance of the prototypes was measured and safety validated using National Institutes for Occupational Safety and Health (NIOSH)-equivalent tests on apparatus available under pandemic conditions at university laboratories. Feedback was obtained from four individuals; two clinicians working in ambulatory clinical care and two research technical staff for whom PAPR use is standard occupational PPE; these individuals were asked to compare PanFab prototypes to commercial PAPRs from the perspective of usability and suggest areas for improvement. Respondents rated the PanFab Custom PAPR a 4 to 5 on a 5 Likert-scale 1) as compared to current PPE options, 2) for the sense of security with use in a clinical setting, and 3) for comfort compared to standard, commercially available PAPRs. The three other versions of the designs (with a Commercial blower unit, filter, or both) performed favorably, with survey responses consisting of scores ranging from 3 to 5. Engineering testing and clinical feedback demonstrate that the PanFab designs represent favorable alternatives to traditional PAPRs in terms of user comfort, mobility, and sense of security. A nonrestrictive license promotes innovation in respiratory protection for current and future medical emergencies. |
format | Online Article Text |
id | pubmed-8450396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84503962021-09-21 De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response Kothakonda, Akshay Atta, Lyla Plana, Deborah Ward, Ferrous Davis, Chris Cramer, Avilash Moran, Robert Freake, Jacob Tian, Enze Mazor, Ofer Gorelik, Pavel Van, Christopher Hansen, Christopher Yang, Helen Li, Yao Sinha, Michael S. Li, Ju Yu, Sherry H. LeBoeuf, Nicole R. Sorger, Peter K. Front Bioeng Biotechnol Bioengineering and Biotechnology The rapid spread of COVID-19 and disruption of normal supply chains has resulted in severe shortages of personal protective equipment (PPE), particularly devices with few suppliers such as powered air-purifying respirators (PAPRs). A scarcity of information describing design and performance criteria for PAPRs represents a substantial barrier to mitigating shortages. We sought to apply open-source product development (OSPD) to PAPRs to enable alternative sources of supply and further innovation. We describe the design, prototyping, validation, and user testing of locally manufactured, modular, PAPR components, including filter cartridges and blower units, developed by the Greater Boston Pandemic Fabrication Team (PanFab). Two designs, one with a fully custom-made filter and blower unit housing, and the other with commercially available variants (the “Custom” and “Commercial” designs, respectively) were developed; the components in the Custom design are interchangeable with those in Commercial design, although the form factor differs. The engineering performance of the prototypes was measured and safety validated using National Institutes for Occupational Safety and Health (NIOSH)-equivalent tests on apparatus available under pandemic conditions at university laboratories. Feedback was obtained from four individuals; two clinicians working in ambulatory clinical care and two research technical staff for whom PAPR use is standard occupational PPE; these individuals were asked to compare PanFab prototypes to commercial PAPRs from the perspective of usability and suggest areas for improvement. Respondents rated the PanFab Custom PAPR a 4 to 5 on a 5 Likert-scale 1) as compared to current PPE options, 2) for the sense of security with use in a clinical setting, and 3) for comfort compared to standard, commercially available PAPRs. The three other versions of the designs (with a Commercial blower unit, filter, or both) performed favorably, with survey responses consisting of scores ranging from 3 to 5. Engineering testing and clinical feedback demonstrate that the PanFab designs represent favorable alternatives to traditional PAPRs in terms of user comfort, mobility, and sense of security. A nonrestrictive license promotes innovation in respiratory protection for current and future medical emergencies. Frontiers Media S.A. 2021-09-06 /pmc/articles/PMC8450396/ /pubmed/34552915 http://dx.doi.org/10.3389/fbioe.2021.690905 Text en Copyright © 2021 Kothakonda, Atta, Plana, Ward, Davis, Cramer, Moran, Freake, Tian, Mazor, Gorelik, Van, Hansen, Yang, Li, Sinha, Li, Yu, LeBoeuf and Sorger. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Kothakonda, Akshay Atta, Lyla Plana, Deborah Ward, Ferrous Davis, Chris Cramer, Avilash Moran, Robert Freake, Jacob Tian, Enze Mazor, Ofer Gorelik, Pavel Van, Christopher Hansen, Christopher Yang, Helen Li, Yao Sinha, Michael S. Li, Ju Yu, Sherry H. LeBoeuf, Nicole R. Sorger, Peter K. De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response |
title | De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response |
title_full | De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response |
title_fullStr | De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response |
title_full_unstemmed | De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response |
title_short | De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response |
title_sort | de novo powered air-purifying respirator design and fabrication for pandemic response |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450396/ https://www.ncbi.nlm.nih.gov/pubmed/34552915 http://dx.doi.org/10.3389/fbioe.2021.690905 |
work_keys_str_mv | AT kothakondaakshay denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT attalyla denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT planadeborah denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT wardferrous denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT davischris denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT crameravilash denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT moranrobert denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT freakejacob denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT tianenze denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT mazorofer denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT gorelikpavel denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT vanchristopher denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT hansenchristopher denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT yanghelen denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT liyao denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT sinhamichaels denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT liju denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT yusherryh denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT leboeufnicoler denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse AT sorgerpeterk denovopoweredairpurifyingrespiratordesignandfabricationforpandemicresponse |