Cargando…
The future of zoonotic risk prediction
In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization,...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450624/ https://www.ncbi.nlm.nih.gov/pubmed/34538140 http://dx.doi.org/10.1098/rstb.2020.0358 |
_version_ | 1784569692811165696 |
---|---|
author | Carlson, Colin J. Farrell, Maxwell J. Grange, Zoe Han, Barbara A. Mollentze, Nardus Phelan, Alexandra L. Rasmussen, Angela L. Albery, Gregory F. Bett, Bernard Brett-Major, David M. Cohen, Lily E. Dallas, Tad Eskew, Evan A. Fagre, Anna C. Forbes, Kristian M. Gibb, Rory Halabi, Sam Hammer, Charlotte C. Katz, Rebecca Kindrachuk, Jason Muylaert, Renata L. Nutter, Felicia B. Ogola, Joseph Olival, Kevin J. Rourke, Michelle Ryan, Sadie J. Ross, Noam Seifert, Stephanie N. Sironen, Tarja Standley, Claire J. Taylor, Kishana Venter, Marietjie Webala, Paul W. |
author_facet | Carlson, Colin J. Farrell, Maxwell J. Grange, Zoe Han, Barbara A. Mollentze, Nardus Phelan, Alexandra L. Rasmussen, Angela L. Albery, Gregory F. Bett, Bernard Brett-Major, David M. Cohen, Lily E. Dallas, Tad Eskew, Evan A. Fagre, Anna C. Forbes, Kristian M. Gibb, Rory Halabi, Sam Hammer, Charlotte C. Katz, Rebecca Kindrachuk, Jason Muylaert, Renata L. Nutter, Felicia B. Ogola, Joseph Olival, Kevin J. Rourke, Michelle Ryan, Sadie J. Ross, Noam Seifert, Stephanie N. Sironen, Tarja Standley, Claire J. Taylor, Kishana Venter, Marietjie Webala, Paul W. |
author_sort | Carlson, Colin J. |
collection | PubMed |
description | In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’. |
format | Online Article Text |
id | pubmed-8450624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-84506242021-09-28 The future of zoonotic risk prediction Carlson, Colin J. Farrell, Maxwell J. Grange, Zoe Han, Barbara A. Mollentze, Nardus Phelan, Alexandra L. Rasmussen, Angela L. Albery, Gregory F. Bett, Bernard Brett-Major, David M. Cohen, Lily E. Dallas, Tad Eskew, Evan A. Fagre, Anna C. Forbes, Kristian M. Gibb, Rory Halabi, Sam Hammer, Charlotte C. Katz, Rebecca Kindrachuk, Jason Muylaert, Renata L. Nutter, Felicia B. Ogola, Joseph Olival, Kevin J. Rourke, Michelle Ryan, Sadie J. Ross, Noam Seifert, Stephanie N. Sironen, Tarja Standley, Claire J. Taylor, Kishana Venter, Marietjie Webala, Paul W. Philos Trans R Soc Lond B Biol Sci Part III: Zoonotic Disease Risk and Impacts In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’. The Royal Society 2021-11-08 2021-09-20 /pmc/articles/PMC8450624/ /pubmed/34538140 http://dx.doi.org/10.1098/rstb.2020.0358 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Part III: Zoonotic Disease Risk and Impacts Carlson, Colin J. Farrell, Maxwell J. Grange, Zoe Han, Barbara A. Mollentze, Nardus Phelan, Alexandra L. Rasmussen, Angela L. Albery, Gregory F. Bett, Bernard Brett-Major, David M. Cohen, Lily E. Dallas, Tad Eskew, Evan A. Fagre, Anna C. Forbes, Kristian M. Gibb, Rory Halabi, Sam Hammer, Charlotte C. Katz, Rebecca Kindrachuk, Jason Muylaert, Renata L. Nutter, Felicia B. Ogola, Joseph Olival, Kevin J. Rourke, Michelle Ryan, Sadie J. Ross, Noam Seifert, Stephanie N. Sironen, Tarja Standley, Claire J. Taylor, Kishana Venter, Marietjie Webala, Paul W. The future of zoonotic risk prediction |
title | The future of zoonotic risk prediction |
title_full | The future of zoonotic risk prediction |
title_fullStr | The future of zoonotic risk prediction |
title_full_unstemmed | The future of zoonotic risk prediction |
title_short | The future of zoonotic risk prediction |
title_sort | future of zoonotic risk prediction |
topic | Part III: Zoonotic Disease Risk and Impacts |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450624/ https://www.ncbi.nlm.nih.gov/pubmed/34538140 http://dx.doi.org/10.1098/rstb.2020.0358 |
work_keys_str_mv | AT carlsoncolinj thefutureofzoonoticriskprediction AT farrellmaxwellj thefutureofzoonoticriskprediction AT grangezoe thefutureofzoonoticriskprediction AT hanbarbaraa thefutureofzoonoticriskprediction AT mollentzenardus thefutureofzoonoticriskprediction AT phelanalexandral thefutureofzoonoticriskprediction AT rasmussenangelal thefutureofzoonoticriskprediction AT alberygregoryf thefutureofzoonoticriskprediction AT bettbernard thefutureofzoonoticriskprediction AT brettmajordavidm thefutureofzoonoticriskprediction AT cohenlilye thefutureofzoonoticriskprediction AT dallastad thefutureofzoonoticriskprediction AT eskewevana thefutureofzoonoticriskprediction AT fagreannac thefutureofzoonoticriskprediction AT forbeskristianm thefutureofzoonoticriskprediction AT gibbrory thefutureofzoonoticriskprediction AT halabisam thefutureofzoonoticriskprediction AT hammercharlottec thefutureofzoonoticriskprediction AT katzrebecca thefutureofzoonoticriskprediction AT kindrachukjason thefutureofzoonoticriskprediction AT muylaertrenatal thefutureofzoonoticriskprediction AT nutterfeliciab thefutureofzoonoticriskprediction AT ogolajoseph thefutureofzoonoticriskprediction AT olivalkevinj thefutureofzoonoticriskprediction AT rourkemichelle thefutureofzoonoticriskprediction AT ryansadiej thefutureofzoonoticriskprediction AT rossnoam thefutureofzoonoticriskprediction AT seifertstephanien thefutureofzoonoticriskprediction AT sironentarja thefutureofzoonoticriskprediction AT standleyclairej thefutureofzoonoticriskprediction AT taylorkishana thefutureofzoonoticriskprediction AT ventermarietjie thefutureofzoonoticriskprediction AT webalapaulw thefutureofzoonoticriskprediction AT carlsoncolinj futureofzoonoticriskprediction AT farrellmaxwellj futureofzoonoticriskprediction AT grangezoe futureofzoonoticriskprediction AT hanbarbaraa futureofzoonoticriskprediction AT mollentzenardus futureofzoonoticriskprediction AT phelanalexandral futureofzoonoticriskprediction AT rasmussenangelal futureofzoonoticriskprediction AT alberygregoryf futureofzoonoticriskprediction AT bettbernard futureofzoonoticriskprediction AT brettmajordavidm futureofzoonoticriskprediction AT cohenlilye futureofzoonoticriskprediction AT dallastad futureofzoonoticriskprediction AT eskewevana futureofzoonoticriskprediction AT fagreannac futureofzoonoticriskprediction AT forbeskristianm futureofzoonoticriskprediction AT gibbrory futureofzoonoticriskprediction AT halabisam futureofzoonoticriskprediction AT hammercharlottec futureofzoonoticriskprediction AT katzrebecca futureofzoonoticriskprediction AT kindrachukjason futureofzoonoticriskprediction AT muylaertrenatal futureofzoonoticriskprediction AT nutterfeliciab futureofzoonoticriskprediction AT ogolajoseph futureofzoonoticriskprediction AT olivalkevinj futureofzoonoticriskprediction AT rourkemichelle futureofzoonoticriskprediction AT ryansadiej futureofzoonoticriskprediction AT rossnoam futureofzoonoticriskprediction AT seifertstephanien futureofzoonoticriskprediction AT sironentarja futureofzoonoticriskprediction AT standleyclairej futureofzoonoticriskprediction AT taylorkishana futureofzoonoticriskprediction AT ventermarietjie futureofzoonoticriskprediction AT webalapaulw futureofzoonoticriskprediction |