Cargando…
A MultiCenter Analysis of Factors Associated with Hearing Outcome for 2,735 Adults with Cochlear Implants
While the majority of cochlear implant recipients benefit from the device, it remains difficult to estimate the degree of benefit for a specific patient prior to implantation. Using data from 2,735 cochlear-implant recipients from across three clinics, the largest retrospective study of cochlear-imp...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450683/ https://www.ncbi.nlm.nih.gov/pubmed/34524944 http://dx.doi.org/10.1177/23312165211037525 |
Sumario: | While the majority of cochlear implant recipients benefit from the device, it remains difficult to estimate the degree of benefit for a specific patient prior to implantation. Using data from 2,735 cochlear-implant recipients from across three clinics, the largest retrospective study of cochlear-implant outcomes to date, we investigate the association between 21 preoperative factors and speech recognition approximately one year after implantation and explore the consistency of their effects across the three constituent datasets. We provide evidence of 17 statistically significant associations, in either univariate or multivariate analysis, including confirmation of associations for several predictive factors, which have only been examined in prior smaller studies. Despite the large sample size, a multivariate analysis shows that the variance explained by our models remains modest across the datasets ([Formula: see text] –0.21). Finally, we report a novel statistical interaction indicating that the duration of deafness in the implanted ear has a stronger impact on hearing outcome when considered relative to a candidate’s age. Our multicenter study highlights several real-world complexities that impact the clinical translation of predictive factors for cochlear implantation outcome. We suggest several directions to overcome these challenges and further improve our ability to model patient outcomes with increased accuracy. |
---|