Cargando…
Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures
If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data esti...
Autores principales: | Wirtz, Markus A., Röttele, Nicole, Morfeld, Matthias, Brähler, Elmar, Glaesmer, Heide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450993/ https://www.ncbi.nlm.nih.gov/pubmed/32864983 http://dx.doi.org/10.1177/1073191120952886 |
Ejemplares similares
-
Some Classes of Logarithmic-Type Imputation Techniques for Handling Missing Data
por: Pandey, Awadhesh K., et al.
Publicado: (2021) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016) -
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017)